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This thesis is a study into the use of functional analysis combined

with structural diagnosis in analyzing analog electronic circuits. I

present the background, an analysis of current research, and propose a

design for the incorporation of functional rules and structural subdivi-

sion on a circuit. I then implement the design in KEE to demonstrate

the proposal and to validate the theory.

While being a continuation of Lt. Ramsey's thesis, which automated

the testing process used by Warner Robins Air Logistic Center, this

project was also a separate approach to the diagnosis problem. I start-

ed my research with an examination of the various approaches suggested

in the current literature; then, selecting ideas such as structural

representation, functional breakdown, and causal analysis, I laid out a

(general plan using structure and function to do a preliminary pruning of

the search space, and functional/causal analysis to restrict the assign-

ment of components to the list of suspect parts. This approach has been

suggested in some of the readings, but appears not to have been imple-

mented as yet.

The development of this project required a few false starts and a

lot of analysis of current trends. I would like to thank those who

helped me sift through the mass to find what has become a diagnostic

system: my thesis advisor, Dr (Maj) Stephen Cross, for his guidance in

the research and suggestions of other approaches to consider; Dr Frank

Brown for his critical review of this thesis; Capt Thomas Clifford for

his reviews and technical assistance; and the technicians and engineers

at Warner Robins Air Logistic Center for their help in my understanding
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the current system and how things ought to be. I also thank those who

provided moral support during this 21 month program.

Special thanks go to my wife, Gloria, and daughter, Melanie, for

their love and understanding during my long hours of isolation. I can

finally take you both to the beach, or maybe we'll go fishing.

Donald R. Wunz, Jr.
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Abstract

The purpose of this thesis is to describe and propose an analog

electronic circuit diagnostic system in an artificial intelligence envi-

ronment using an expert system. An introduction to the topic, research

into current technology, identification of participants, problems, goals

and resources, preliminary design, detailed design and implementation,

and conclusions and recommendations are covered.

As part of its continuing study of reliability and maintainability,

Rome Air Development Center (RADC) has been tasked to develop an auto-

mated system to be used to diagnose electronic circuit boards. The

objective is to use an expert system to aid in the diagnosis in order to

r9 identify bad components more specifically than is done by the Automated

Test Equipment (ATE) now in use at the Air Logistic Centers.

The current system also does not correctly identify some components

which are bad, and does not perform some required tests at all. This

research project will describe and implement an experimental system in

an attempt to correct these problems.

The current knowledge in artificial intelligence has just started

to define some of the fundamental requirements for such a system. Dis-

cussions have been presented describing different approaches to the

problem of circuit analysis. Stallman and Sussman defined a system that

uses deep physical knowledge about electronics in an attempt to build a

tool that traces through a circuit data base similar to a simulation

system in an attempt to isolate the cause of a given fault. De Kleer

vii
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proposed a tool using a hierarchical definition based on structure and

function. Others have proposed functional tracing, causal reasoning,

and combinations of the above.

The problems identified by those involved, RADC and Warner Robins

Air Logistic Center, were defined as stated earlier: the ATE system

does not isolate the fault to specific components, does not correctly

identify faulty components, and does not perform some required tests.

The goals of this thesis are to research the background and the current

techniques available, develop a definition of necessary data for an

expert system knowledge base, propose a method of combining the know-

ledge base and expert system techniques into a diagnostic tool, and to

implement a prototype of the system to demonstrate its usefulness.

The current work by others has proposed some common approaches.

Many have suggested the use of functional reasoning about the effect a

component has in a circuit; some have suggested the use of a hierarch-

dical structure that can be traced which will improve the search of the

knowledge base; and others have recommended the use of specific know-

ledge of electronic components in the analysis of faulty circuits. The

approach taken in this research is to combine these into one diagnostic

tool using the capabilities of each technique. A structural representa-

tion based on a subdivision of the circuit by functional subunits, com-

bined with specific knowledge of the subunits and their individual com-

ponents, is used as a preliminary design. This is then implemented with

the use of KEE, an expert system building tool chosen for its support of

graphics, menu selection, and interface with the underlying Lisp system.

It has been determined, after analyzing the prototype system, that

the technique is a feasible approach and deserves further study. From

viii
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the prototype, a more user-friendly system could be built taking advan-

tage of other capabilities of the KEE system; in particular, the system

can be expanded to include other, more complex circuit designs.
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DIAGNOSIS OF ANALOG ELECTRONIC CIRCUITS:

A FUNCTIONAL APPROACH

I. Introduction

This chapter presents an overview of the attempts by the Air Force

to intelligently diagnose electronic component errors on flight quali-

fied circuit boards, a discussion of the problems encountered, and a

description of this research including the scope of the problems cover-

ed, the assumptions made, and the approach taken.

Background

The Air Force Logistics Command is responsible for the maintenance

of Air Force aircraft. Several Air Logistic Centers exist, each charged

with maintaining certain aircraft; Warner Robins is one such center and

is responsible for the F-15 aircraft weapon system.

The Warner Robins Air Logistic Center (WRALC) currently uses auto-

matic test equipment (ATE) to test printed circuit boards for the con-

verter-programmer power supply on the F-15 aircraft. The diagnosis

system operates 24 hours a day, 7 days a week and consists of a depot of

ATE and highly skilled technicians, The ATE isolates problems in the

power supply board, creating a list of suspect components; the techni-

cians manually troubleshoot the board to identify the bad components for

replacement. When the suspect components are identified, the board is

forwarded to another station for replacement of the parts and then re-

turned for testing. If the problem still exists, the process is repeat-

ed. This possibly results in several days' time to repair a card. The

tests are incomplete and the list of suspect components is usually long
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and vague. This is typical of the current method of testing analog

circuits.

In this thesis, structural testing is defined as the testing of a

circuit at the component level without regard to the functions of the

components within the circuit or sub-circuits. Functional testing is

defined as the attempt to assign fault at some sub-circuit level and to

continue subdividing the circuit into functional units until a specific

component can be identified as malfunctioning. Functional testing would

more specifically identify suspect components thus being more thorough

and requiring fewer test-repair cycles. A more specific identification

of suspect components will reduce the maintenance time required for a

board.

The analog power supply circuit depicted in Fig. 1 will be used for

illustrative purposes -- both to describe problems with current ap-

proaches and to demonstrate the functional design advocated in this

thesis. This is a simplified version of a typical power supply, speci-

fically that of the Heathkit E-89 computer.

Power supplies in general perform similar functions, that function

being the conversion of electrical power from one form to another. In

this respect, the B-89 power supply is similar to the power supply found

in the Air Force F-15. The F-15 circuit provides power from a different

type of source and has provisions for emergency power, but is still just

a power supply.

Problems

As part of its ongoing research in reliability and maintainability,

the Rome Air Development Center (RADC) has been tasked to automate the

1-2
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maintenance diagnostic procedures for AFLC. Towards this end, RADC has
"4,

q " sponsored theses at the Air Force Institute of Technology (AFIT); one

such thesis was accomplished by Lt James Ramsey (Ramsey, 1984). His

thesis researched the use of artificial intelligence in electronic diag-

nosis and used the F-15 power supply board for a model.

The goals of Ramsey's thesis were, in part, to build an expert

system to identify the generalized knowledge required, to implement the

system using another technique to get a feel for different representa-

tions, and to implement the knowledge base from the ATLAS code currently

run on the ATE for the F-15 power supply diagnostics. Other goals given

were, to port the system to another machine, to include the physics of

the circuit and a graphics interface, to interconnect the system with

the ATE, and to implement a circuit simulation system. The earlier

goals were accomplished, but the others were left unimplemented or at

least incomplete.

This thesis is, in some respects, a continuation of his thesis in

that the physics of the circuit (the functional analysis) is studied.

The present research effort, however, is more concerned with general

knowledge concerning functional analysis and less with specific cir-

cuits; hence, Ramsey's implementations of the ATLAS code testing will

not be used.

Lt Ramsey's thesis identified numerous problems associated with the

hardware and software of the ATE at WRALC. (Ramsey, 1984: 1-2 - 1-4):

1. Old hardware

2. Inflexible and poorly documented programs

3. Failure to isolate to a single component

I", 4. Failure to isolate to the correct component
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5. Failure to use accessible existing circuit connections

6. Failure to use existing computer hardware

7. Difficult interfacing between the unit under test and the ATE

8. Little or no feedback to the operator

9. Failure to check all possible components

Of these, three have been identified to be of primary interest to this

project. These have been singled out by the technicians at WRALC as

being the most troublesome; these particular problems appear to be some-

thing left to an expert and may be solvable using an expert system.

1. Failure to isolate to a single component - Current proce-
dures using ATE result in several components being listed
as suspect; sometimes as many as 25 to 30 for the power
supply board.

2. Failure to isolate to the correct component - Due to inac-
curate testing, the ATE sometimes incorrectly passes bad
components and indicates the board is usable.

3. Failure to check all possible components - The current
software does not even consider some components of the
circuit when running the tests.

Scope

The purpose of this research is to propose and test a methodology

and the requirements for performing a functional diagnosis of analog

circuits. The final goal of a project of this magnitude would be to

provide a viable user package, to be implemented in the field depots,

which performs diagnostics on Air Force hardware.

This is a short-term project, however, which is limited in what can

be accomplished. Therefore the research goals are restricted to an

assessment of the present technology, analysis of basic requirements,

and a prototype of the required software. Things not considered are:

1-5
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graphic display of the circuit under test, automated input of the know-

ledge base from the schematics, and the external connection of this

system to ATE systems for direct machine-machine communication.

Assumvt ions,

The discussion that follows assumes the reader has an elementary

knowledge of AC and DC electricity and a basic understanding of discrete

(non-integrated chip) electronics (references would include texts such

as Schaum's Outline Series books Bic Circuit Analysis. Electric Cir-

cuits and Electronic Circuits). Also, familiarity with artificial in-

telligence and Lisp programming may be helpful (with such references as

LISPCraft by Wilenaky and Artificial, .Itligence by Rich). For imple-

mentation of this project, the KEEl system on a lisp machine supporting

Zetalisp2 functions was used.

Approach

The remaining chapters will begin with a discussion of the current

knowledge, including definitions, a description of expert systems, and a

look at current research in circuit diagnosis. Then the components

involved in this research will be identified: participants, problems,

resources, and goals. Next will be the foundation of the preliminary

design and its formalization followed by a detailed design implementa-

tion and its testing. Finally, a discussion of the conclusions and

recommendations for further work in this area will be presented.

IKEE is a trademark of Intellicorp

2 Zetalisp is a trademark of Symbolics

1-6
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II. Current Knoledie

Def init ions

Obviously, before going into depth concerning this research, some

terms must be defined to provide a common basis for the discussion.

Knowle. First, knowledge is defined as the domain-specific in-

formation required to: (1) understand the domain's problem statements,

and (2) provide the skill necessary to solve some of these problems

(Hayes-Roth, 1983: 4). Relevant to this research, (Hayes-Roth, 1983: 4)

also distinguishes between public and private knowledge. Public know-

ledge is the published information and data about the domain subject,

and private knowledge is the heuristic knowledge necessary to make edu-

cated guesses, deal with incomplete or wrong data, and to recognize an

approach as being on the right path to finding the desired solution.

iniL. Systems. Expert systems is an area of artificial intelli-

gence that "investigates methods and techniques for constructing man-

machine systems with specialized problem-solving expertise." (Hayes-

Roth, 1983: 3-4). In other words, an expert system is a system that

can diagnose a faulty electronic circuit in a television receiver but

cannot watch the TV when finished. An expert system relies heavily on

the private (heuristic) knowledge of an expert to fill in the tremendous

gaps left by the public knowledge.

Ideal Moe 1L xetSse

According to (Hayes-Roth, 1983: 16 - 17),

the ideal expert system contains a language processor for
problem-oriented communications between the user and the ex- .

pert system; a "blackboard" for recording intermediate re-
sults; a knowledge base comprising facts as well as heuristic

a. CC
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planning and problem-solving rules; an interpreter that ap-
plies these rules; a scheduler to control the order of the
rule processing; a consistency enforcer that adjusts previous
conclusions when new data (or knowledge) alter their bases of
support; and a justifier that rationalizes and explains the
system's behavior (see Fig 2).

USER

LAGUG FACTs

PLAN -. INERRE TER

AGND / HDU

BLACKBOARD

Figure 2: Anatomy of an expert system

ImplementinK an Expert ulae

Five basic steps are required to build an expert system: identifi-

cation, conceptualization, formalization, implementation, and testing

(Rayes-Roth, 1983: 23).

Identification defines the problem and its characteristics without

concern, at the moment, with what is available or necessary for its

11-2
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solution. This most often involves defining the problem in terms of a

state space, initial and goal states, knowledge (operators or rules)

that transforms one state into another, and choosing a control strategy

that systematically applies the operators. The control strategy may be

a linear progression or may even resemble how a human "thinks" about the

domain; that is, it may follow some heuristic search to apply the next

most logical operator.

Next, conceptualization identifies the necessary characteristics

and the applicable concepts for the problem solution. The knowledge

gained is then structured into an organization to represent a formal

model during formalization after which implementation defines the rules

required to represent the public and heuristic knowledge. Finally,

testing verifies the implementation and evaluates its performance com-

vpared to some standard defined by experts in the domain field (Hayes-

Roth, 1983: 23-24).

Sumrvo f Current Knowledge

There currently exist several circuit diagnosis systems. These,

however, have certain limitations. Some are excellent packages but are

restricted to digital applications. Others test analog circuits but are

limited to a structural diagnosis, failing to identify specific bad com-

ponents; they either provide just a list of components or indicate that

the failure is within some sub-circuit without giving any further de-

tails. To date, little has been done in applying functional diagnosis

to a circuit. Following is a review of some of the current literature

which, when implemented, could improve analog circuit diagnosis.

11-3
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I,

uiallm an d Sussman The approach taken by (Statlman, 1979) makes

use of the structure of the circuit, the physical properties of the

individual components, the physical laws of electricity, and propagation

of constraints to analyze the circuit malfunctions. Their method of

assumed states makes predefined assumptions concerning the circuit's

voltage and current levels, and the state of various components within

the circuit. These assumptions are then propagated through the circuit

assigning 'responsibility' for each assumption to some law or rule, and

specific, previously assumed values. When a contradiction is encoun-

tered, assumptions leading up to it are un-assumed and another path in

the search is taken.

This propagation would be a complete circuit analysis if not for

two problems in particular. First, an analog circuit of any complexity

would generate a total sears..n space too large to handle; and second, in

the case of circuits containing feedback such as oscillators, a propaga-

tion schema may not know when to stop. Also, such a structure would be

all but incomprehensible to an engineer since everything about the cir-

cuit is being considered at the same time; there is no functional break-

down to simplify the user's view of the problem.

De Kleer. (De Kleer, 1984b) looks at six progressive approaches to

circuit diagnosis:

1. Modern approach - Now referred to as the conservative
approach.

2. Empirical association approach.
3. Knowledge organization along structural and causal

lines.
4. Deep knowledge about behavior to make troubleshooting

inferences - What De Kleer calls the most powerful.
5. Deep knowledge about fault modes.
6. Causal models.

According to De Kleer, a troubleshooter does two things: he makes

11-4
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. measurements and replaces components. When making measurements, two

steps are taken: he computes the results of previous tests, and decides

to take more measurements. The troubleshooter's goal is to make the

measurement that has a maximum of information gain. With this in mind,

the goals of a troubleshooter expert system are: robustness, general-

ity, efficiency, and constructability.

The modern approach is to write a program specifically for the

problem at hand. Such a system could contain 100,000 lines of code and

be capable of finding only 30Z of the possible faults. Knowledge is

implicit in the code; influence is not explicit. Thus the program is

not robust. Since it is for a specific system, the program is not

general; it follows the same path every time, from start to stop in the

same order, resulting in poor efficiency. And, finally, it would be

difficult to construct such a large program without error.

With the empirical association approach, a list of if-then rules is

defined and processed. The system size is down to 10,000 rules from the

100,000 lines of code. Knowledge is explicit and therefore easier to

change, but, if another rule is found, a problem arises in finding just

where it should be placed. With 10 thousand rules, robustness is still

poor and constructability is bad. Such a system is also weak in gener-

ality because a new system would require a whole new set of rules.

Efficiency, however, would be close to optimal since the only rules

fired would be those whose if part were satisfied.

When some sort of knowledge organization is added, the system is

easier for the engineer to understand, and the robustness would improve;

however, all else would remain the same.

11-5
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The approaches described above all share one limitation: they ig-

nore behavior of parts or components. The fourth technique uses deep

knowledge about behavior of components to make troubleshooting infer-

ences. Knowing the behavior of given parts, and values from measure-

ments, constraints may be propagated until a conflict is found, identi-

fying the cause of the problem. The problem here is one of expected

measurements versus actual measurements. Parts have tolerances, the

measurements have variances, etc.

Most rules are automatically handled by the coincidence mechanism

and there are only about 100 rules. Robustness is dramatically improved

and generality is much better. Efficiency is good since the system does

most of the work, and constructability is much better.

The fault mode reverses the propagation of fault values and search-

es for the fault from the output of the system. De Kleer claims such an

approach would reduce the rulebase to 25 rules, but admits that more

would have to be added to allow for the backward propagation of con-

straints. The fault mode improves the performance according to the

defined goals, but the extra code required for the backward propagation

would add to the initial effort.

The last considered is the causal model, which infers about rules

to fill in weak associations. This method also adds a mechanistic model

which defines the physical layout and connections of the circuit. Here,

as in the fault mode approach, much more work is required at the begin-

ning to provide the mechanistic model database and the extra code needed

for the inference mechanism.

Davis. While the work by (Davis, 1983 and 1984) is aimed primarily

--1' at digital electronic circuit analysis, there are a few fundamental

11-6
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design ideas that may be applied to circuit analysis in general. They

have taken two approaches to circuit diagnosis: functional diagnosis

and structural (physical) diagnosis. Functional analysis is performed

on a functional hierarchy of the circuit while structural analysis re-

lates the physical components in a structural hierarchy.

First, a look at the functional picture. The device under test is

separated into functional components and a hierarchy is built up by

successively expanding the components into subcomponents. Each compo-

nent is treated as a "black box" with given "ports" representing input

and output connections to other external components. Diagnosis begins

at the top of the functional hierarchy.

The structural hierarchy is developed in relation to the physical

hardware. The device consists of a power supply, circuit board, etc.,

which, in turn consist of ICs, transistors, resistors, wire, etc.; ICs

are also broken down to individual gates. A relation is then developed

which connects individual components of the functional hierarchy to the

structural hierarchy, showing the physical position of each functional

component. That is, for example, gate-I is physically part of IC2, the

power supply physically resides on board-i, and so on.

This relation is then used during diagnosis to identify other pos-

sible fault causes that are "functionally" unrelated but are "physic-

ally" related. For example, an unused gate on an IC may be damaged

causing one or more gates on the same IC to malfunction; or, as is

pointed out in their article, a gate on one IC may be bad, influencing

4 voltage levels on other ICs thus causing the fault to appear in unre-

lated circuits.
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Cantonsl L .- IN-ATE/2. (Canton, 1984) describes one of the few

-°analog circuit diagnosis systems available today. IN-ATE/2 uses a hier-

archical fault-mode decomposition to provide the search base for test

selection using the gamma miniaverage method. This search method uses

cost of test, cost of component replacement, probability weighting, and

resulting proximity to diagnosis as parameters in selecting the best

test to perform next. Hierarchical fault-mode decomposition is a func-

tional hierarchy where each successive level provides more detail of

each functional unit. This is very similar in concept to the functional

representation described by Chandrasekaran and Sembugamoorthy (to be

looked at next). Such a representation permits the diagnostic tool to

be more selective in its analysis and test selection because it is able

to "see" what is directly connected or related to the current test

point. The rules in IN-ATE/2 are also predicated by preconditions simi-

lar to PROSPECTOR; the rules have the form of preconditions -> if ->

Jthen where the preconditions must be met prior to testing the if clause.

The preconditions specify exactly what state the unit under test must be

in: previous test results, cabinet opened, voltage/signal applied to

test points, etc. The cost associated with making a test is the value

of actually performing the test plus the cost of meeting the precondi-

tions not yet satisfied.

Chandrasekaran and Sembuiamoortby. (Chandrasekaran, 1984 and 1985)

took a similar approach in their functional representation for diagnos-

tic problem-solving systems. They developed a hierarchical structure

that provides more detail deeper in the structure. Five different views

are taken at each level: structure, function, behavior, generic know-

e. . ledge, and assumptions.
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,,The structure defines a module's physical connection to other mod-

ules; the function says what the module should do, vhile the behavior

explains how; the generic knowledge provides general information perti-

nent to the module; and the assumptions are just that, assumptions about

the state of the system in relation to the module. When a malfunction

is being diagnosed, we start at the top of the hierarchy and descend the

structure a layer at a time in an effort to isolate the failed compo-

nent. The failed component itself may be further subdivided, in which

case the search continues in that substructure until fault can be as-

signed. If, at any level, a module checks out satisfactorily, then no

further search is made below it since a fault below it would imply the

module itself had failed.

Milne. The technique suggested by (Milne, 1985) carries the diag-

nostic process a step further than simple functional analysis to include

structural testing when functional testing fails. Ris proposal for

functional behavior suggests failure can be assigned to individual com-

ponents by viewing the expected vs. actual behavior over a specified

time frame. He assigns responsibility for specific behavior during a

time slice to one component; if the circuit fails in this responsibil-

ity, then the identified component is blamed. If, however, the test

cannot be performed due to lack of signal, etc., then a set of struc-

tural rules are invoked to suggest possible causes such as a shorted or

open component.

He describes the output of each component as a waveform, voltage

level, etc. with sub-components of the output, based on time slices,

described as sub-circuits. Each sub-component of the output is then

H1-9
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assigned to the component of the circuit responsible for that part of

the output.

Milne's next step is to apply deep functional reasoning to automat-

ically derive the output from low level definitions of individual elec-

trical components. These "second principles", plus low level rules for

waveform addition, permit the system to automatically derive the output

for each component and assign it the responsibility for that waveform.

Summary 2L AuRnroacb

With the current knowledge reviewed in this chapter, it is now

proper to outline the approach this thesis will take. To develop an

expert system, it is necessary to identify the data required and a

method of implementing the knowledge base. The characteristics chosen

from the current literature for representation of the knowledge base are

a hierarchical structure of the circuit such as that suggested by Davis,

a functional relationship between modules as suggested by many of the

papers read, and some deep understanding of individual components as

discussed by Chandrasekaran, Sembugamoortby and Milne in their papers.

Expert system building tools will be looked at closely along with

the frame-based implementation accomplished by Ramsey to decide what

type of implementation will be made.

Of course, all this will rely on the identification of the problem

and what goals are to be accomplished. These are discussed in the next

chapter.
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,- III. Identification

The first step in developing an expert system is to identify who

has a problem, what the problem is, what the goals of the system are to

be, and what resources will be required.

Particinants

In this project, some of the participants are obvious. Since the

research is being sponsored by Rome Air Development Center in the inter-

ests of Air Force Logistics Command, RADC and AFLC will be declared

primary participants. Warner Robins ALC is the specific participant

within ALC that requested the study. Other primary participants include

the students performing the research and the instructors supervising the

thesis research. Secondary participants include all those providing

technical assistance. Others involved are those that provide no input

to the research but may realize some benefit from the results.

Problems

Lt Ramsey's thesis identified numerous problems associated with the

hardware and software of the ATE at WRALC. (Ramsey, 1984: 1-2 - 1-4):

1. Old hardware

2. Inflexible and poorly documented programs

3. Failure to isolate to a single component

4. Failure to isolate to the correct component

5. Failure to use accessible existing circuit connections

6. Failure to use existing computer hardware

7. Difficult interfacing between the unit under test and the ATE

8. Little or no feedback to the operator
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9. Failure to check all possible components

As mentioned earlier, based on interviews with WRALC technicians and on

artificial intelligence applications, only three are of primary interest

to this project.

1. Failure to isolate to a single component - Current proce-
dures using ATE result in several components being listed
as suspect; sometimes as many as 25 to 30 for the power
supply board.

2. Failure to isolate to the correct component - Due to inac-
curate testing, the ATE sometimes incorrectly passes bad
components and indicates the board is usable.

3. Failure to check all possible components - The current
software does not even consider some components of the
circuit when running the tests.

Ramsey's thesis was an attempt to automate the testing procedures

conducted by current ATE. As such, no consideration was given to inter-

nal test points not currently used by the ATE or the functional charac-

teristics of the components of the unit under test; thus, all analysis

is performed on the final output signals without the aid of internal,

intermediate signals, or the specific effects of the submodules on the

system's output signals. This forces testing to proceed at the compo-

nent level in an attempt to assign fault based solely on the final

result without regard to module functionality. When a large, complex

circuit is involved, little can be done to isolate the problem beyond

some sub-circuit which, in all likelihood, still contains far too many

components for the resulting suspect-component list to be worthwhile.

First, consider the sample circuit in view of present ATE methods.

Such a system would have rules such as:
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IF +18v IS LOW
THEN T1, BI, Cl ARE SUSPECT.

IF -18v IS LOW
THEN T1, Bl, C2 ARE SUSPECT.

IF +5v IS LOW
THEN Ti, B2, +5vReg, C3, R1, R2 ARE SUSPECT.

IF +2 .5v IS HIGH OR LOW
THEN Ti, B2, +5vReg, C3, R1, R2 ARE SUSPECT.

This obviously is of little help if the +2.5v source is wrong; then

every component related to that part of the circuit is suspect, leaving

the engineer to guess which part is really bad.

With such a large data base of rules, and without some sort of

organization, it would be very easy to mislabel the responsible compo-

nents for some test fault, or to overlook a necessary test. For exam-

ple, had the test for +2.5v HIGH been left out, the board would be

malfunctioning but would pass the testing procedure; or, had a test been

left out altogether, subfunctions performed by the board would be missed

completely.

An understanding of the functional behavior of components is essen-

tial to troubleshooting a circuit; without this knowledge, testing per-

formed may be insufficient to properly isolate malfunctioning compo-

nents. Also, having a functional structure imbedded within the system

forces a complete analysis, preventing components from being overlooked

in the testing procedures. Such a search would be more specific in

assigning responsibility for given faults. Knowing the function expec-

ted of components will make testing more specific by isolating a given

error to those components responsible for the incorrect behavior. One

last benefit is that a structured design permits inserting and deleting
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of specific routines more easily than in a system not structurally de-

' signed; modification is greatly simplified compared to the analysis

required to find the correct place to insert new routines in an unstruc-

tured system.

Now, consider the sample circuit using a functional analysis. Sup-

pose the +5v reference is low. According to the rules mentioned ear-

lier, Ti, 32, *5vReg, C3, RI and R2 are suspect. This is essentially

the 5 volt supply sub-circuit. Now look at the vaveform between +5v and

ground; if the vaveform is like this,

I

I/1+5v I

----- ------------------------------------------

then B2, *Sweg, 11 and 12 are functioning properly and the list of

suspect components has been narrowed down to TI and C3. Measuring the

waveform between TP4 and TI6 will tell if the voltage level from TI is

sufficient, and, if so, then C3 must be bad.
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All this can be functionally defined as follows:

PoverSuPPI_

I \
+1 8 v 2 .5v

/II\ //1II \\_____
/II\ I _._/I ._\

/III\I / /\\
ACSrc Rect Filter ACSrc Rect Filter +SvReg Voltage

I A\I[ I I I DividerII I I I I I I I
T1 D2 D4 CI T1 B2 C3 R1 R2

I A I

/ \

//

-l l D3 C2T1 B
where inte+8 oton epniiii s o opnnsae

/Il\ //\\_____

/ I \ / / \ \/ I \ / / \\
ACSrc Rect Filter ACSrc Rect Filter +tveeg

I /\I I I
I / \I I I
Tl Dl D3 C2 Tl B2

where, in the +18v portion, responsibilities of components are:

ACSrc - Supply 13 vrms AC sine wave
Rect - Full-wave rectification of 4-l3v sine wave
Filter - Filter sine wave to provide +l8vDC

Goals

The goals of this thesis effort are: to conduct a literature

search and describe deficiencies in the present technology concerning

electronic diagnosis, to analyze the requirements in relation to the

technology available, and to implement a prototype of the diagnostic

*. system to demonstrate the capabilities, limitations and practicality of

the design.

The literature search is a sampling of several different styles to

identify the strengths and weaknesses of each which will permit the

combining of techniques. Such a combination should result in a system
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with a collection of good qualities while offsetting some of the bad

qualities of each technique by compensation from the others.

The analysis will result in the identification of the characteris-

tics and rules required in the knowledge base necessary for the diagnos-

tic process. The characteristics and rules will be kept separate so

changes can be easily made to either as necessary.

The implementation will take place on the chosen hardware/software

support system and will provide a basic diagnostic system capable of

being examined for its performance. The performance characteristics to

be measured include accuracy, ease of use, flexibility, and adaptability

to other circuits.

Resources

Finding a system in which to implement this project requires that

certain capabilities be considered. Provisions for a structural repre-

sentation of the knowledge base, graphics capabilities, menu selection

facilities, and a "lower level" language interface are among the consid-

erations.

The system will rely heavily on a structural representation to

perform the diagnostic procedures defined earlier. The input/output

interrelationships of submodules of a circuit require the hierarchical

relation which is provided by a structural representation. Also, test-

ing will require either a rule system or interfacing with a lower level

such as the Lisp language to perform the diagnostic testing.

Since Ramsey's thesis dealt primarily with the F-15 power supply

card and the ATLAS code based on the test requirements document, his

OPS5 and Frame KB implementations are not useful in the solutions of the
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goals of this thesis. His further efforts with component history added

to the knowledge base was also of no use here; as before, the problem

exists of identifying the wrong component. The history may show a spe-

cific part has caused problems before and is probably at fault again

when it is an entirely new problem this time.

To illustrate the insufficiency of the previous approach, consider

the following interview with a WRALC technician which provided a helpful

insight for the approach to solving the diagnostic problems. The func-

tional description (Fig. 3) and circuit example (Fig. 4) obtained from

them provide an example of the type of functional knowledge needed to

implement a functional diagnostic system.

Normally 3 rectified DC is regulated through A3Ql out to pin
27 as 12 VDC. When 36 power is lost, a circuit breaker closes

and applies 28 VDC to pin 47 from pin 48, which gets it from a
battery. The 28 VDC on pin 47 is fed to AIQI through AlC4, as
well as to the collector of AIQ3. At first, AIC4 acts as a
short and the positive voltage turns on AlQl, which turns off
AIQl2, AlQll, and A3Q6. The 12 VDC output is developed across
the series combination of AlVR10, AlCR57, AIR45, and AlQI. As
AIC4 charges, AlQl cuts off, AlQl2, AlQll, and A3Q6 come back
on. The signal path for the 28 VDC is now from pin 47,
through A3Q6, AlCR34, and A3Ql which regulates it to 12 VDC,
out to pin 27. A3Q6 y provides rough regulation down to 12
VDC and A3Ql provides fine regulation.

Figure 3: Functional Description

Much of this knowledge is not known to the ATLAS code or Ramsey's

implementation of it. Also, with all the interaction within this sub-

circuit, historical data may be misleading at the least; there may be

several causes that result in the same output, and the historical data

would just flag all components having a failure history.

11
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IV. Preiiar. De.sgAJv.

This project will define a system as a functional structure. The

system viii consist of a functional description, an expected behavior, a

list of submodules with an assignment of responsibility for some portion

of the behavior, and a set of input and output waveforms for the module

indicating good, bad or unknown behavior of the module. An empty list

of submodules implies that either the current module has sole responsi-

bility for behavior and must be replaced as a single component, or the

subcomponents have no internal test points and a functional rule must be

invoked. Since more than one submodule may be responsible for a given

behavior, the search must activate the tests for each submodule involved

to ensure a complete analysis is made to identify all bad components.

The function is a description of what the module does. The behav-

ior is a step-by-step description of how the module performs its func-

tion and includes a list of submodules responsible for each step of the

description. The lowest level submodules will also contain a list of

input/output waveform pairs which, when matched with the test results,

will specify whether the module's condition is good, bad, or unknown;

there will be a functional rule which is invoked when the module is

classified as "bad" to allow a functional analysis to determine which

components within the module are at fault. The general format of the

structure definition is:
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functionalstructure
function
behavior_l by sub module_1, sub module_2
behavior_2 by submodule_2
in lowest submodules only,

vaveforms
functional.rule/components

in all but the lowest submodules,
parts

Each submodule is then described in a similar manner until the complete

circuit has been defined.

*Looking at a part of the sample circuit's definition:

PowerSupply
Function: Provide +l8vdc, -18vdc, +5vdc, and +2.5vdc
Submodule functions: provide +18vdc by +18

-18vdc by -18
+5vdc by +5
+2.5vdc by +2.5

Parts: +18, -18, +5, +2.5

+18
Function: Provide +18vdc

• .Submodule functions: Receive 36v p-p AC by +18ACSrc
Rectify AC by +lBRect
Filter +18vdc by +18Filt

Parts: +18ACSrc, +18Rect, +18Filt

+18Rect
Function: Full-Wave rectify AC input
Functional.rule/components:

fullwave.rectifier (D2 D4)
Waveforms -

Input Output Function
Flatwave @ Ovdc Flatwave @ Ovdc unkn
Flatwave @ Ovdc Sinewave bad
Halfwave Sinewave bad
Fullwave Sinewave good

Considerations in the diagnostic process may now be viewed. When

determining whether a component is good or bad, its function must be

stated, then an answer is needed: "Is the component performing its

function?". There are different ways to specify the function being

performed by a good component. Mathematics could be used but would be

too complex for people to understand (except perhaps the senior engi-
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p.,

, neers having the extensive theoretical background). O the other hand,

if the descriptions are simple enough for anyone to understand, then

they will probably be too vague to be of any practical use. Therefore,

a middle ground must be found that is simple enough for the technician

to understand but complex enough to be of value. Thus, the technician's

terms, the "standard" language used in the electronics field by amateurs

and professionals alike, have been chosen.

In an analog system, frpquencies, voltage levels, etc. are con-

stantly changing; in digital circuits, on the other hand, everything

runs off a given clocked pulse, and voltages are all typically at just

two or three specified levels. Any real discussion about the function

of a component in an analog circuit must consider what that component

does to the input signal; the selection of waveforms for the functional

representation was based on this consideration. In analog electronics,

the characteristics of the signal in a circuit provide most of the in-

formation needed to determine the condition of the components of the

circuit.

Testing will proceed in one of two ways. The first option is to

perform a search, such as would be done at a work bench where the unit

under test may be opened up and all test points may be used. The search

for bad components starts out at the highest level of abstraction, con-

stantly narrowing the fault down to more specific sublevels. The second

method for troubleshooting is the approach taken by ATE systems, where a

limited number of test points, usually only the output signals, are

available. It is necessary in this approach to utilize functional know-

ledge of the subcomponents in determining which one(s) are causing the
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fault seen at the output point. This too is a routine that trims the

search tree by dropping down each level of abstraction until specific

components can be identified.

The plan of this thesis is to model the actual engineering desin

process of the equipment to be tested. When an engineer sits down to

lay out a circuit, he/she starts out with an overall plan -- design a

power supply. To build one, an AC source, a voltage rectifier, a fil-

ter, a voltage regulator, etc., are needed. Within each of these a

further breakdown defines what is needed to perform its sublevel func-

tions. For example, the voltage regulator may consist of a single regu-

lator component or may comprise several transistors, resistors and capa-

citors. This same procedure is used whether designing a power supply or

a television receiver.

By modeling this procedure to define the system, the definition

will be as straightforward as the system design and can be written at

the same time. If changes are made to the circuit, the same changes can

be accomplished by adding or removing portions of the definition. When

the design is complete, the circuit definition will be complete and

ready to insert into the diagnosis system.

Such a modeling procedure applies to other areas as well. For

example, artificial intelligence approaches to software engineering at-

tempt to ease software maintenance by making the design decisions expli-

cit. In any area, if maintenance is considered during the design, then

steps can be taken to use the design decisions in the development of the

maintenance procedures.

Testing using the first method described earlier is accomplished by

starting at the top and pruning the hierarchical tree by verifying
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whether the submodules are functioning properly. If any given submodule

is not working, its submodules are examined, and so on, until no further

subdivision is defined. Failing modules having no submodules are then

replaced and testing is again performed to validate the unit under test.

The general procedure for testing with the first method is as

follows:

testmodule(root)

where testmodule is defined as:

if function not correct
then

for each behavior[i] do
if behaviorti] not correct

then
if submodule_list not empty

then
for each submodule do

test_module(sub module)
else~else

replace module

Testing by the second method prompts the user for the output wave-

form of the final stage and works its way backward matching output waves

to possible input waves in each subcomponent and determining whether a

subcomponent is functioning properly based on the input/output wave-

forms. The input/output waveform pairs define the function of the sub-

component under different conditions. In any case where a component is

defined as bad, it can then be broken down into its own subcomponents

where the initial input and final output waveforms are known and a

search can be made to further restrict the selection of suspect compo-

nents.

This is where the "functional reasoning" comes in. The function of

*.-. a component under differing conditions is represented by the possible
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combinations of input and output vaveforus. Judging a component based

on its effect on the signal is effectively saying a component is good or

bad based on its function. A diode's function is to pass current in one

direction and to block it in the other direction. If its selected

input/output waveform pair shows that a negative pulse is present at the

output, given a sine wave at the input, then it can be said that the

diode is not functioning properly.

Knowing a module's input and output waveforms, a functional rule

can be invoked to further restrict the suspect-component list. If, in

the above example, the +18 rectifier has a sine wave input and a half-

wave output, then fault can be assigned to a specific diode depending on

which half of the sinewave is missing. If the positive half is present

and the negative half is missing, then D4 is known to be at fault.

F Any component can be analyzed in such a way, whether it is a simple

single-part component or a complex subcircuit. Obviously, a more com-

plex component will require a larger, possibly less reliable, func-

tional analysis. A large circuit may not have any internal test points

to allow diagnosis according to the earlier input/output waveform test

procedures, and be too complex to permit a detailed analysis, resulting

in a large list of suspect components. However, such circumstances are

still preferable to building a functional reasoner for the entire cir-

cuit without benefit of any logical subunits.

The reliability of the suspect component list depends on the func-

tional rule being invoked; the rule may be able to identify specific

components or may only be able to suggest that one or more of the list

of components is bad. The same is true for multiple-part faults; if
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possible, the functional rule may be able to identify several components

at fault at one time.

The diagnostic system can identify multiple failures if the wave-

forms provided allow for failed component input/output; for example, if

the output of +5 VDC is a filtered balfwave with a peak of +8 volts,

then the output of the rectifier indicates it is bad (a halfvave instead

of a fullwave signal) and the regulator output indicates it is bad since

the signal is peaking at +8 volts instead of +5 volts.
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V. Detailed Desigfn o Apdlementation

Certain capabilities had to be considered when looking for a system

to be used to implement this project. Provisions for a structural rep-

resentation of the knowledge base, graphics capabilities, menu selection

facilities, and a "lover level" language interface were among the con-

siderations.

The system will rely heavily on a structural representation to

perform the diagnostic procedures defined earlier. The input/output

interrelationship of submodules and the bench-type testing require the

hierarchical relation which is provided by a structural representation.

Also, the bench-type testing will require either a rule system or inter-

facing with a lower level such as the lisp language to perform the

diagnostic testing.

Graphics are needed to display associated waveforms when running

ATE-type testing, and merus are needed to choose the appropriate wave-

form.

One of the systems available today that provides most of the above

requirements is KEE. KEE provides a structural representation of the

knowledge base, has window facilities to support menus acd other display

functions, contains activeivages for graphic displays, and permits nor-

mal use of lisp while KEE itself is active. In addition, KEE provides

capabilities for tool prototyping which could be used in a later project

to generate ATLAS code for the WRALC analysts. For these reasons, KEE

Je

has been selected tc implement the diagnostic system.

The system is organized in four parts: circuit representation,

waveforu3, diagnostic procedures, and functional rules. Of these, only
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the circuit representation and functional rules are changed to implement

a diagnosis system for a different circuit; the waveforms can be added

to as needed, and the diagnostic procedures remain unchanged.

To apply KEE to circuit diagnosis, all components and subcomponents

will be defined as members of the class circuits. gMebers of this class

have slots for a function definition, a subfunction-subcomponent list, a

functional rule identifier, waveforms, and a parts list. The subfunc-

tion-subcomponent list has the form

(subfunction (subcomponevt (testpoints))
(subcomponent (testpoints))

)

for each subfunction. Notice that there may be more than one subcompo-

nent responsible for a given subfunction. (testpointa) is an optional

Olist of relevant test or connection points for the subcomponent. The
.or

function definition is just a narrative statement about the functi-G of

the ccmponent and is of the form (functional description).

The functional rule identifier slot will have the name of the ap-

propriate functional rule and a list of responsible parts, if the module

has no further subdivisions defined in the parts list. If the diagnosis

determines that this module is bad, then the functional rule is executed

with the input wave, the output wave, and the list of responsible parts

as parameters. It is then the responsibility of the rule to determine

what parts within the component are at fault.

The waveforms slot consists of a list of possible output waveforms

% with their respective possible input waveforms and a flag indicating

whether the input-output transition is a good, bad or unknown transition

V-2

?Ile



4

for this component. The list has the form

((output-waveform characteristics)
(input-waveform characteristics flag)
(input-waveform characteristics flag)

)

for each output waveform. There may be more than one input that may

cause a given output, and the flag, as mentioned above, is one of g, b

or u (good, bad or unknown) indicating the performance of the component

in translating the given input form into the given output form. The

characteristics field is a narrative concerning the characteristics of

the given waveform such as voltage levels, frequency, etc. More will be

said about waveforms in the following discussion of the implementation

of waveforms in the system and in the description of the diagnostic

procedures.

The parts list of a component is simply a list of the subcomponents

of the given component and serves the following purposes. First, it is

used to show the hierarchical relationship among the various components.

There are two functions taking advantage of this relationship: graphkb,

and graph. graphkb has no parameters and will display the entire system

graph in the current KEE output window. graph receives one parameter, a

component, and displays the substructure of the system graph having the

given component as its root node.

Waveforms are implemented as members of the class waves. Each form

is a bitmap associated with a variable name. Each member of waves has a

variable name assigned to the form slot identifying the associated wave-

form. The waveform names used in the circuit representation are the

member names defined here. Methods are defined within waves for creat-
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ing and displaying waveforms. Each waveform is created using editba, a

part of KEE's activeimages package, and displayed with a call to

bitblt*. The methods can be invoked by any function wishing to display

or create a waveform.

The bench-test procedures are implemented in lisp with a depth-

first search performed starting at a given component, expanding any

component identified as "not functioning" and pruning the search by not

expanding functioning components. At each component, the function is

presented to the user, one subfunction at a time, to determine whether

it is being performed. The value returned from the call to

bench.diagnose is a list of bad components.

The fault-test procedures (designed from the ATE-type tests with

functional rules added) are built up from the window and graphics provi-
.-

sions, and with lisp to create a menu of selectable waveforms. Each

identified output waveform is matched with corresponding input waveforms

for the module; these are then presented as the possible output wave-

forms from the ne7t module back. At the end of the list of submodules,

that is, the first submodule of the given module to be tested, the input

waveforms are provided to the user for verification of the functioning

of the first submodule.

Illustrative Example

Now consider an example of the two different test methods described

above. Assume diode D4 is open and see how the test routines handle the

situation.

With the bench method, a series of questions is asked of the user

and the returned value is a list of suspect components. The following
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is the dialog conducted by the system (User responses are underlined):

Does PowerSupply provide +l8vDC? 1

Does +18 receive 36v p-p AC? j

Does +18 rectify AC? v

Does +18 Rectifier pass +AC sinewave? I

Does +18 Rectifier rectify -AC sinewave? a

Does +18 filter +18vDC? _ (Note: It does filter the halfvave that
it is receiving.)

Does Powersupply provide -18vDC? I

Does PowerSupply provide +5vDC? y

Does PowerSupply provide +2.5vDC? I

The list of suspect components is: (D4)

As can be seen, the system does identify diode D4 as bad.

Using the fault testing procedure, we ask the system to diagnose

the +18 volt power supply. It starts out with a menu selection of the

possible output waveforms from the +18 Filter and we select the Filtered

Halfwave form. This identifies what corresponding input waveforms are

possible of which there is only one, a rectified halfwave. The system

then looks at the +18 Rectifier with an output rectified halfwave as a

reference. Again, there is only one combination and the +18 ACSrc out-

put, equivalent to the +18 Rectifier input, is a sinewave. This shows

that the +18 Rectifier is bad and the +18 ACSrc is good. Since the +18

Rectifier is not further broken down, its functional rule is invoked.

The fullwave.rectifier rule then compares the input and output waveforms

to identify which diode is bad. Since the positive half of the sinewave

is present at the output and the negative half is missing, the rule

determines that D4 is bad and returns it as the faulted component.
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&xtension I& De Klerr' Samvle Circuit

The next step in the development of this thesis is to implement a

more complex circuit to see if the technique still works. The circuit

shown in Fig 5 is one used in De Kleer's work and would require hudeds

of rules to be implemented on the present ATE system. Based on func-

tional reasoning, De lleer has speculated that there would only be 25

rules required.

This circuit was broken down functionally and implemented similar

to the earlier example with similar results. Looking at a sample run of

the fault testing will show the similarities.

Entering (diagnose "voltage-control "fault) in the lisp window re-

sults in a menu of waveforms to choose from. Selecting the filtered

halfwave 6 volt peak waveform as the output from VC-tICT2 causes the

diagnostic system to trace backward to VC-VOLT-COITROL which is good

according to the waveform pair, then to VC-FILT2 which may be good or

bad depending on its input (the output from VC-RAICI-SL CTOR). If the

filtered halfwave 12 volt peak output is chosen, then VC-FILT2 is bad

and the trace continues. VC-RZG is found to be bad since the only

possible output is the filtered halfwave 36 volt peak; its input is the

filtered halfwave 36 volt peak from VC-FILTI which appears to be func-

tioning properly. Its input is from VC-nZCTl which is found to be good,

and last, the output from VC-ACSRC shows it to be good.

Looking at the above sample run, by selecting only two waveforms,

the system has been able to identify VC-FILT2 and VC-REG as the compo-

nents responsible for the malfunctioning power supply. The functional

rules for these two are then invoked. The rule for VC-FILT2 identifies

.;.- C2 as bad, and the rule for VC-KEG, being less definite, identifies "One
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or both of" D4 and D5 as bad.

Other sample runs using beuch and fault testing are included in

Appendix E.

The effort required to implement De Kleer's sample circuit was

minimal and consisted of subdividing the circuit and identifying each

portion's function, representing the functions in waveform pairs, and

adding the functional-cause code for the new subcircuits (such as the

pi-rc filter and the halfwave rectifier). A more complex subcircuit

such as the current-regulation portion of this circuit (composed of the

six transistors and associated capacitors and resistors) requires a more

detailed analysis by the design engineer to provide the necessary data

for the software engineer to follow when writing the functional rules.

Aplication Io the F-15 Poer SuRRIX

Working closely with the engineers at WRALC should provide the

necessary information to implement a diagnostic system for the F-15

power supply board. It would be a much larger project than those used

here as examples, and may not be able to fill all the gaps since new

test points cannot be added; however, this diagnostic package would

provide more than the current ATLAS testing does. This system will

force the structuring of the problem, provide some of the functional

testing, and can fill in the missing portions with causal rules similar

to the ATLAS code.

Since the F-15 power supply is a three-phase circuit, much of it

can be divided into three parts, one for each phase. Each subsection is

then at about the same level of complexity as De Kleer's sample circuit.
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The other portions of the circuit are different functional units and can

be treated separately.

The circuit is functionally decomposed and tested at the subunit

level. The system effectively eliminates many components simply by

identifying the function(s) being performed properly. Then the func-

tional rules take over to apply the engineer's knowledge to isolate the

bad components.

Analysis

At best, the functional analysis tool developed in this thesis will

provide a comprehensive diagnostic aid for the field. At worst, it will

still provide the structural format plus the current test procedures

included as functional rules. This implies that this approach is better

than the current system since it will provide more than just the ATLAS

test procedures that are used now. The work involved in implementing a

circuit diagnostic tool with this package should be less than that re-

quired to write the ATLAS test procedures since the structure is defined

and it is less likely that anything would be mislabeled or forgotten.

Less time would be spent verifying the tool, allowing more time to be

spent analyzing the test requirements. The end result is a more com-

plete, more accurate test package in the same amount of time.

There were three problems identified by WRALC engineers as being of

primary interest to this artificial intelligence project: failure to

isolate to a single component, failure to isolate to the correct compo-

nent, and failure to check all possible components.

Assuming the knowledge base for the given circuit is properly de-

signed and stated, this thesis project has solved the three problems for
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the analysis of at least some circuits.

The use of waveform analysis for functional isolation of faults,

and functional rules to analyze components identified as potentially

bad, permits more accurate identification of components at fault, thus

solving the first problem.

If the engineer's design specifications are accurate and fully

implemented, then all possible components will be tested within a func-

tional unit and good and bad components will be properly identified.

The written analysis of the sample circuit given earlier (Figs 3

and 4) presents the final test of the implementation of this thesis.

The analysis proceeds in a step-by-step description of the events that

occur when the circuit loses the 36 power. The overall function of the

circuit can be defined in the terms necessary for this diagnostic sys-

tem; however, the time-critical events, such as "at first, AlC4 acts as

a short (and) turns on AlQl ... as AIC4 charges, AIQI cuts off", are not

definable in the present system. This, other one-time events, and some

periodic events need further time-slice analysis which is not currently

supported.

Without internal test points, subcircuits such as the current-

control regulator portion of De Kleer's sample circuit contain too many

interdependencies for effective aralysis; in other words, the system may

not be able to say any more than "The current-control regulator is bad".

Perhaps, at this point, it may be helpful to return to the statistical

data base suggested in Ramsey's thesis. A probability of fault may be

better than nothing.

Another minor limitation of this diagnostic system is the limited

.v space available in the selection menu for comments about the waveforms.
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A simple solution to this would be to place all expected waveforms in a

printed form with full comments and just have an indexed reference in

the comment space on the menu.

The use of the product of this thesis is a straight-forward ap-

proach when dealing with linear analog circuits. The introduction of4
feedback loops within the circuit still presents some problems. Other

circuits not considered at the waveform analysis level are those con-

taining subcomponents with more than one input, or those containing no

inputs such as oscillators.

The problem of multiple inputs should be a feasible addition to the

current system; however, feedback presents other questions such as, "How

many times should the loop be traversed before making a good/bad/unknown

decision about the subcircuit. Feedback loops usually include multiple

inputs so this problem will need to be resolved prior to the feedback

tracing problem.

Again, a method of time-slicing may provide some answers. Any

looping traces conducted will need to consider discrete events which can

be represented by a time-slice analysis.

Overall, this thesis accomplished its objectives by defining an

approach to solving the problems identified earlier, and implementing a

testable model of the approach to show its feasibility.
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., ,., VI. Conclusions and Recommendations

Conclusions

This thesis has addressed representative problems faced by the Air

Force today in testing circuit boards removed from operational systems.

It has looked at the current knowledge in the field of circuit diagnosis

using artificial intelligence, and defined a functional system of cir-

cuit analysis to aid in circuit fault testing.

This project is an attempt to provide more accurate specification

of bad components than is available currently in the Air Force using

ATE. The procedures outlined above use a functional description to

isolate the problem into successively more restricted sub-circuits with-

in the circuit under test instead of applying the structural testing

currently performed. The testing defined by this system is best set up

by individuals knowledgeable about the circuit to be tested since the

engineer's knowledge concerning the circuit is required. Field person-

nel knowing little or nothing about the circuit can use the system since

the diagnostic procedure is menu driven (in the fault testing mode), and

question/ansver driven (in fault and beach modes), both of which will

lead the user from step to step requiring him/her to only make the

required measurements, and answer the questions or select from a menu.

There are several restrictions in this preliminary implementation.

The circuit to be tested must be decomposed by hand; the subcomponent

lists must be hand massaged into the correct order for the testing to

progress properly; the functional rules must be written in Lisp. Some

of these restrictions may be considered in later theses or in other

research. There are people actively investigating other approaches to
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designed to relax the restrictions, such as the work by Chandrasekaran.

Re is pursuing the development of a knowledge base language that sup-

ports functional descriptions of circuits at the design stage, from

, which diagnostic rules may be deduced (Chandrasekaran, 1984). Other,

less serious, restrictions may be identified and worked around as exper-

ience progresses.

Extending the diagnostic system to another circuit involves defin-

ing the component layers of the circuit and identifying the function and

input/output waveform matchings related to each. If the circuit is

being developed, the definitions may be entered during the process as

explained earlier. With a circuit already designed, the process of

defining it to the system may be more difficult; analysis may be re-

quired if the circuit is an unfamiliar one, and considerable bench test-

WV ing may be needed to identify the effects of a component on a given

input signal.

Any application of this diagnostic system to other circuits (power

supplies and other linear circuits) should only require the entry of the

circuit data. Other functional rules may need to be added for special-

ized circuits and for general circuits that have not yet been encount-

ered. The system itself may need other waveforms defined but these

would be one-time additions to the system as further waveforms are found

to be required.

Recommendations

There is still much to be done. Little consideration has yet been

given circuits involving feedback. Automatic interfacing to ATE equip-

ment is a possibility. A more refined interface to make it more appeal-
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ing to the users would be helpful. Also, KEE provides more refined

capabilities which could be implemented for a more responsive system.

Circuits with feedback control, oscillators, multivibrators, etc.

need to be looked at more carefully. Any circuit where the output some-

how affects its own input may be difficult to represent as a collection

of submodules below the module containing the complete feedback circuit.

The development and use of a circuit simulator may prove beneficial. A

circuit containing feedback could be passed to the simulator with the

initial input and output waves to analyze the performance of the compo-

nents within the circuit. It would then be the simulator's responsi-

bility to recommend faulted components.

There are two types of interfacing possible to ATE equipment. One

would be to have the diagnostic system directly interact with the ATE

(obtaining the answers needed to identify bad components. The other

would be to use the diagnostic system as a tool in guiding the develop-

ment of the ATE software, selecting what tests need be performed, and

when, and using the system to create the test routines. In effect, the

system would be used to write the ATLAS code required by the ATE.

Ergonomic considerations could be made to improve "user friendli-

ness". In the Al aspects of user interfacing, research into creating

the database for a given circuit from its schematic diagram automatic-

ally would be a great plus. Such a system would require considerable

knowledge about the function of individual components in any given sit-

uation; at present, the required data is input by the human engineer.

KEE has other capabilities that were not used in this thesis due to

a lack of in-depth knowledge concerning the implementation of KEE. It
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supports multiple knowledge bases which could be used to separate the

waveforms from the rest of the circuit description, thus permitting the

creation of a new system without copying the basic form every time to

include the waveforms. Window scrolling could be implemented instead of

the software routines currently used when there are more than six wave-

forms to be displayed in the diagnostic routine.
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Appendix A: Cmjne. Descriptions

Diodes

Diodes perform the basic function of passing current in one direc-

tion (while forward biased) and blocking it in the other (while reverse

biased). In a DC circuit, the diode will act as a piece of wire if

forward-biased and as an open circuit if reverse-biased; in an AC cir-

cuit, the diode's performance depends on the input signal. Only that

portion of the signal that is negative will not pass through the diode.

When considering the 60Hz AC found in typical household electricity,

half the sinevave is passed, and half is blocked; this is known as

halfwave rectification. In fullvave rectifiers, the sinewave is fed to

another diode in the circuit in a way that provides the "negative" half

as a second positive halfvave at the output, thus providing a total of

two positive halfvave outputs from one positive and one negative half-

wave input.

Resistors

Resistors provide a path for the flow of electricity while resist-

-* ing that flow to some degree depending on the value of the resistor.

The vaveshape input does not change, however, its voltage level does.

If the resistor is in series with another load in the circuit, the

vaveform's voltage will drop from one side of the resistor to the other

providing a reduced voltage to the load. If the resistor is in parallel

with another load, however, the same vaveshape and voltage level are

input to the resistor and the load, and the voltage drop across the

resistor will be the total voltage of the waveform.
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The performance of a capacitor is a little more difficult to ex-

plain. In series with another load, a capacitor passes alternating

signals and blocks DC signals, both without regard to voltage levels;

also, the lover the frequency of the AC signal, the more resistance a

capacitor has in response to it, thus acting something like a resistor

the value of which is dependent upon the frequency of the AC signal. A

DC signal applied to a capacitor and load in parallel will be totally

consumed by the load since DC will not pass through a capacitor. With

an AC signal applied, a capacitor has two effects: first, an AC signal

will pass through the capacitor; and second, as the positive halfcycle

of a sinevave builds, the positive plate of a capacitor charges (causing

a negative charge on the negative plate, thus appearing to 'short out'

the alternating current). When it starts to fall off, the positive

plate appears more positive than the signal and will discharge, trying

to stabilize the voltage level applied to the load. The same effect

would appear during the fall/rise of the negative halfcycle. If, how-

ever, there is no negative halfcycle, such as the output of a half or

full wave rectifier, the next rising halfcycle will recharge the capaci-

tor's positive plate and start the cycle over again, thus "filtering"

the signal to the load into an almost DC signal. The larger the value of

the capacitor, the less ripple and hence the purer the DC signal.

Transformers

DC will not cross a transformer, only a varying signal will pass

.

from the primary winding to the secondary winding of a transformer. The

rise of current in the primary winding creates an increasing magnetic
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field which induces a voltage in the secondary winding in one direction.

As the current in the primary winding falls, the magnetic field col-

lapses which induces a voltage in the secondary winding in the opposite

direction. As can be readily seen, an alternating signal whose voltage

level never falls negative is converted to one whose vaveform is divided

by the O-volt line, half positive and half negative. The voltage at the

output is related to the input voltage and the ratio of input windings

to output windings.

Switches. Fuses

When a switch is closed, it and a fuse serve the same function, to

provide a direct connection from the input point to the output point.

When a switch is opened, the direct connection is removed. Fuses only

break the circuit when blown and serve to limit the current drawn by the

'U circuit containing them.

Transistors

Transistors provide a variable control for current flow between the

emitter and collector. The current flow is controlled by the third pin

of a transistor, the base. Current will only flow in one direction

between the emitter and collector of a transistor; in an NPN transistor,

current goes from emitter to collector; in a PNP transistor, current

goes from collector to emitter. Typically, a DC voltage is connected

across the emitter and collector of a transistor, and a signal is ap-

plied to the base. The rise and fall of the signal on the base is then

reflected, either directly or inversely, in the current flow between the

emitter and collector. The actual appearance of the input vaveform on

the EC circuit depends on the bias voltage applied to the base and the
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voltage levels of the base's input waveform. Some clipping of the sig-

nal may occur if the cutoff voltages are reached and the EC circuit

limits or cuts off the current flow.

Inductors

Coils readily pass DC but present a resistance to the passage of

AC. The higher the frequency of the signal, the more resistance a coil

presents. Connected between some point in a circuit and ground, a coil

will act as a direct short for DC and low frequency signals, and a

resistance for high frequency signals. A coil in series in a signal

path will pass DC and low frequency signals and block high frequency

signals. A coil in parallel with a load becomes a high-pass filter

(passing high frequencies to the load and shorting out low frequencies),

and a coil in series with a load is a low-pass filter (passing low

frequencies and DC to the load and blocking high frequencies).
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Appendix B: Diagnostics Source

Mode:LISP; Package: KEE; Base:10. -*-

Filename: DIAG-LOAD.LISP
Version: 1.0
Date: 4 Feb 86

Project: Functional Diagnostic System

Author: Don Wunz

Description:
This file loads the diagnostic routines and the functional
rules, then sets the current knowledge base and displays
its graph in the current (normally left) KEE display window.

(load "diagnose.lisp)
(load 9funct-cause.lisp)
(set.kb nil)
(graphkb)

B,-
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Mode:LISP; Package: KEE; Base:lO. -*-

Filename: DIAGNOSE.LISP
Version: 1.0
Date: 4 Feb 86

Project: Functional Diagnostic System

Author: Don Wunz

Description:
This file contains the diagnostic routines responsible for
diagnosing through either the bench-diagnosis, the
ate-diagnosis, or the functional-fault-diagnosis.

Contents:
set.kb
graph
graphkb
make .wave
*wave-list* and associated tv:add-typeout-item-type functions
*menu-select*

*sensitive-window*
diagnose
bench.diagnose

(e set.component.list
test.subcomponent
fail
show.list
test.ckt
get.parts
find.components
get.input.waveforms
get.output.waveforms
setup
setup.b
setup.a
show.components
func.diagnose
column.list
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set.kb is executed during the initial load to set the current
working knowledge base, and can be run at any time to change the
current knowledge base when changing over to another system to be
diagnosed. set.kb has one parameter, the knowledge base to be
selected as the current one.

(defun set.kb (kb)
(setq *kb* (kbreference kb)))

; graph will display the subgraph with the given component as the
; root. The component must reside in the current knowledge base.
; The display is to the current KEE output window.

(defun graph (component)
(slot.graph *kb* component 'parts nil nil '(horizontal)))

; graphkb will display the current knowledge base in the current
; KEE output window.

(defun graphkb ()
(slot.graph.kb *kb* "%c:ts nil nil '(horizontal)))
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make.wave is used to create a new waveform to be added to the
4 , knowledge base. The one parameter to it is either nil which starts

with a blank bitmap, or the name of a current waveform to be used
as a starting form. Note, the bitmap name given must be the name
as found in the FORM slot of the waveform in the knowledge base.
To use this function, you must setq a new bitmap name to make.wave
such as the following:

(setq newwave (make.wave fullwave))
then, add it to the knowledge base as instructed, and last, create
a member under WAVE with the FORM slot equal to the new bitmap name.

(defun make.wave (bm.name2)
(prog (bm.namel)

(cond
(bm.name2
(setq bm.namel (bitmapcopy bm.name2)))

(t
(setq bm.namel (make-bitmap 100 100))))

(editbm bm.namel)
(terpri)
(terpri)
(princ "lEnter 1)
(terpri)
(princ 'I (add.bitmap.to.kb 'bm.name 'kb.name) I)
(terpri)
(princ 'ito save the bitmap with your knowledge base.I)
(terpri)
(princ 'IThen, create a new member of WAVE with bm.name asi)
(terpri)
(princ 'I the value of the FORM slot.1)
(terpri)
(terpri)
(return
bm.namel)))

; The following is the a-list for the mouseable window to be created
; during the ate and fault type testing. The list is for the menu
; of options for the mouse buttons which can be selected. the two
; tv:add functions insert the options "exit" and "re-select" to the

popup window.

(defvar *wave-list* nil)

(tv:add-typeout-item-type *wave-list* :new-type
"exit" (exit) nil "exit")

(tv:add-typeout-item-type *wave-list* :new-type
"re-select" nil nil)
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; This defines the flavor for the mouseable window used for ate and
fault type diagnosis.

(dcfflavor *menu-select* ()
(tv:centered-label-mixin
tv:borders-mixin
tv:top-box-label-mixin
tv:changeable-name-mixin
tv:basic-mouse-sensitive-items
tv:window))

This defines the mouseable window that is created for ate and fault
type diagnosis.

(defvar *sensitive-window*
(tv:make-window

'*menu-select*
:borders 2

-:top 455

:bottom 700
:right 1088
:%idth 1088

':blinker-p nil
":label '(:font fonts:bigfnt)
':item-type-alist *wave-list*
':font-map '(fonts:cptfontcb)))

diagnose is the main function. When called it verifies the option
and calls the appropriate diagnostic function and, when finished,
calls the appropriate listing function. If the option given is
invalid, a message is displayed to the user and the function returns.

(defun diagnose (component test-type)
(graph component)
(cond

((equal test-type 'ate)
(show.components (test.ckt component)))

((equal test-type 'fault)
(func.diagnose (test.ckt component)))

((equal test-type 'bench)
(show.list (bench.diagnose component)))

(t
(terpri)
(princ test-type)
(princ "'I is an invalid option. <FAULT, ATE or BENCH allowed>D
(terpri))))
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; bench.diagnose is the control function for bench-type diagnosis.
; The one parameter passed to it is the component to be diagnosed.

(defun bench.diagnose (component)
(prog (component-list functions)

(setq functions (get.values component 'function))
(setq component-list

(set.component.list (list component) functions))
(cond (functions

(return
(apply 'append

(mapcar 'test.subcomponent
component-list functions))))

(t (return (list component))))))

set.component.list receives a component name and a list of its
functions. The value returned is a list of occurrances of the
component name repeated once for each function in the function list.

(defun set.component.list (component functions)
(prog )

(cond (functions
(return (append component

(set.component.list
component

(cdr functions))))))))

; test.subcomponent recurses by calling bench.diagnose to do a depth-

; first search through the circuit's hierarchical representation.
; I will stop at each node to verify the operation of that node and
; will expand that node's child nodes if it is failing to perform
; its function properly. Otherwise, it will 'prune' that part of

. ; the search and go on.

(defun test.subcomponent (component functions)
(prog )

(cond ((fail component (car functions))
(cond ((cdr functions)

(return
(apply 'append

(mapcar 'bench.diagnose
(mapcar 'car

(cdr functions))))))
(t (return (list component))))))))
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; fail displays the function of the given component and asks the
; user if the function is being performed properly. Returns true
; if the component is failing, otherwise, returns false (nil).

(defun fail (component function)
(progn ()

(graph component)
(terpri)
(princ 'IDoes I)
(princ component)
(princ '1 1)
(princ function)
(princ '1? 1)
(cond ((equal 'n (read))))))

show.list is called by diagnose when the selected option is 'bench.
A list of suspect componcats is displayed. All other components
are assumed to be good.

(defun show.list (line)
(terpri)
(cond

(line
(princ "IThe list of the suspect components is 1)
(column.list line))
(t
(princ 'No suspect components found.I)
(terpri)))

(terpri))

************** ************ ***************************************

test.ckt is the driver program for ate and fault type testing. It
;"calls find.components to diagnose the circuit having the root node
; of component and then formats the returned value into a list of lists
; of the form (part input-waveform output-waveform condition) which is

returned.

(defun test.ckt (component)
(loop with results - (find.components

(get.parts component))
for part in (car results) and

input-waveform JitA (cadr results) and
output-waveform in (caddr results)

collect (list part
(list (car input-waveform)

(cadr input-waveform))
(list (car output-waveform)

(cadr output-waveform))
e.',.* (caddr input-waveform))))
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; get.parts returns a list of all elemental parts of the given

%" ; component. That is, it returns a list of all the leaves of the
; hierarchical tree structure having component as its root.

(defun get.parts (component)
(prog (parts)

(setq parts (get.values component 'parts))
(return

(cond
(parts
(return
(apply 'append (mapcar "get.parts parts))))

(t
(return

(list component)))))))

; find.components receives a list of parts and determines the condition
; of each according to the output waveform and input waveform selected
; from the menu when displayed.

(defun find.components (paf.,
(loop with part-list anL

input-waveform-list and
output-waveform-list and
intermediate-result and
final-result

for part in parts and
wf first (get.output.vaveforms (car parts))

then (setq wf final-result)
collect (car (unitfullreference part)) into part-list
do (setq intermediate-result

(caddr
(setup 'Output (car (unitfullreference part)) wf)))

(setq final-result
(get.input.waveforms part intermediate-result))

if (caddr intermediate-result)
collect intermediate-result into input-waveform-list

collect intermediate-result into output-waveform-list
finally

(return
(list part-list

(append input-waveform-list
(cddr
(setup 'Input

(car (unitfullreference part))

final-result)))
output-waveform-list))))
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get.input.waveforms returns a list of all possible input waveforms
; given the component and its output vaveform. If the given output

waveform is "unk"nown, then all possible input waveforms are
returned.

(defun get.input.waveforms (part output-waveform)
(prog (subparts)

(setq subparts (get.values part 'parts))
(return

(cond
((atom

(car output-waveform))
(return

(loop with result - nil
for wf in (get.values part 'waveforms)
if (or (equal (list (car output-waveform)

(cadr output-waveform))

(list (caar wf) (cadar wf)))
(equal (car output-waveform) 'unk))

do (setq result (append result (cdr wf)))
finally

(return
result))))

(t
(return

(loop with result = nil
for wf in (get.values part 'waveforms)
do (setq result

(append result
(loop with rslt = nil

for wvfrm in output-waveform
if (or

(equal
(list (car wvfrm)

(cadr wvfrm))
(list (caar wf)

(cadar wf)))
(equal (car wvfrm)

Iunk))

do (setq rslt
(append rslt

(cdr wf)))
finally

(return
rslt))))

finally

(return
result))))))))
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; get.output.waveforms returns a list of all output waveforms

; possible from the given component.

(defun get .output.vaveforms (component)
(loop with wf

for wf in (get.values component 'vaveforms)
collect (car wf)))

; setup receives the io-flag, module name, and output waveform list
; and calls either setup.a or setup.b to display the selection menu
; depending on the total number of waveforms. If there are more than
; six waveforms, then we want to allow the user to view all of them
; before making a selection (we do this by calling setup.b). If there

; are six or less, then we can just display them (by calling setup.a).

(defun setup (io-flag module wave-form)
(prog ()

(return
(cond

((equal wave-form nil)
(return

"(unk)))
((equal (cdr wave-form) nil)
(return

(list nil nil (car wave-form))))(t

(prog (wf)
(setq wf (append wave-form "((unk))))
(cond

((< (length wf) 7)
(return

(setup.a io-flag module wf)))
(t

(return
(setup.b io-flag module wf))))))))))
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; setup.b breaks up the list of waveforms into groups of five forms
; and displays them with a sixth form of "other" to allow rotating
; the groups past the window in order to view all possible waveforms.
; When "other" is selected from the last group, the first group is
; redisplayed (like wrapping around).

(defun setup.b (io-flag module wave-form)
(loop with pwf wave-form

as result (progn )
(c ond

((equal pwf nil)
(setq pwf wave-form)))

(loop with lwf - nil

for i from 1 to 5
if pwf

collect (car pwf) into lwf
do (setq pwf (cdr pwf))
finally

(setq lwf (append lvf "((oth))))
(return
(setup.a io-flag module lwf))))

while (equal (caddr result) "(oth))
finally

(return
result)))
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.OeS, S setup.a receives the io-flag, module name, and vaveform list and
displays the list of waveforms with a title on the menu specifying
whether the vaveforms are input or output to the named module.
The function will then wait until a vaveform has been selected and
will return the data associated with that form.

(defun setup.a (io-flag module wave-form)
(tv:window-call (*sensitive-window* :deactivate)

(send *sensitive-vindow*
I c lear-window)

(send *sensit ive-window*
: set-name

(string-append
"Which waveform is"
(string io-flag)
(cond

((equal io-flag 'Input)
(string " to
(t
(string " from ")))

(string module)))
(loop for vf in wave-form and x first 0 then (+ x 1)

do (send *sensitive-window*
- :string-out

(substr ing
(string-append

(car (get.values (car wf) 'form))

(cond
((cadr wf))
(t
(string " "M

0 20))
(send *sensitive-window*

I :string-out " ")
(send *sensitive-windov*

:bitblt
tv:alu-seta
100 100
(eval (car (get.values (car wf) 'form)))
0
0

x 176)
20)

(send *sensitive-window*
:primitive-item
:new-type

wf
(* x 176)

0
(+ (* (+ x 1) 164) (* x 12))
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120))
(loop as blip - (send *sensitive-vindov* ':any-tyi)

until (equal (cadr blip) '(exit))

finally
(send *sensitive-vindow* ':clear-window)

(return
blip))))

show.components is called by diagnose when the selected option is

ate. The condition of each component is displayed for the user.

(defun show.components (line)

(terpri)

(loop for 1 in line
4 do (terpri)

(princ 'IThe condition of component [)

(princ (car 1))

(princ "1 with input I)
(princ (cadr 1))
(terpri)
(princ 'I and output 1)
(princ (caddr 1))

(princ 'I is I)
(cond

((equal (cadddr 1) 'g)
(princ "Igood.))

- ((equal (cadddr I) 'b)

(princ '"bad.I))

(t
(princ 'Iunknown.I)))

(terpri))
(terpri))

I1
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func.diagnose is called by diagnose when the selected option is
'fault. If a component is labeled as bad, its fault function is
invoked to isolate the bad components even further. The function
then lists all good components, then all components whose condition
is unknown, then all bad components.

(defun func.diagnose (results)
(terpri)
(loop with good-components - nil and

unknown-components - nil and
bad-components - nil

for rslt in results
if (equal (cadddr rslt) 'b)
collect

(list

(eval (list (caar (get.values (car rslt) 'funct-cause))
'(quote ,(cadr rslt))

'(quote ,(caddr rslt))
'(quote ,(cadar

(get.values (car rslt)
'funct-cause)))))

"]inI
(car rslt))

into bad-components
if (equal (cadddr rslt) g)
collect (car rslt) into good-componentsif (equal (cadddr rslt) 'u)

collect (car rslt) into unknown-components
finally

(terpri)
(princ "IList of good components =)
(cond

(good-components
(column.list good-components))

(t
(column.list '(None))))

(princ "IList of unknown components I)
(cond
(unknown-components
(column.list unknown-components))

(t
(column.list '(None))))

(princ "IList of bad components I)
(cond

(bad-components
(column.list bad-components))

(t
(column.list '(None))))

(terpri)))
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colutn.list is a utility function called by other functions wishing
a columnar display of elements within a list. Each element within

the given list is displayed on a line by itself and indented 10
spaces.

(defun column.list (list)
(loop for item in list

do (terpri)
(princ '1 I)
(princ item))

(terpri))
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.Appendix C: Fault Analysis Source

,. - Mode:LISP; Package:KEE; Base:l0. -*-

Filename: FUNCT-CAUSE.LISP
Version: 1.0
Date: 4 Feb 86

Project: Functional Diagnostic System

Author: Don Wunz

Description:
, This file contains the functional rules pertinent to the

different types of circuit modules. Each receives the
, input and output waveforms and a list of components
a contained within the module. It is the functional rule's
a responsibility to diagnose the module and return a list
, of components it finds to be failed.

4 , Contents:
o, single.component

fullwave.rectifier
V voltage.divider
, dual.r.zd.regulator
, two.way.range.selector

pi.rc.filter
, complex.dekleer.current.regulator

<)

; single.component is used for any module comprised of only one
; component. If this function is called, that means the module was

; found to be bad and implies that the one component it contains has
; failed. Therefore, this function simply returns the component.

(defun single.component (input-wave output-wave component)
(setq component component))
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; fullvave.rectifier receives a list of tvo diodes; the first is
; the one responsible for the positive halfvave of the input and the
; second is responsible for the negative halfvave of the input.
; The value returned is the diode responsible if a halfvave is seen
; as the output vaveform, othervise, if no vaveform is seen output,
, the list of both diodes is returned.

(defun fullvave.rectifier (input-vave output-wave diodes)
(prog ()

(return
(cond

((equal (car output-wave) "nw)
(return
diodes))

((equal (car output-wave) 'hw)
(terpri)
(princ 'Ile the positive halfcycle I)
(princ Ilof the input waveform output? I)
(cond

((equal 'n (read))
(return (car diodes)))

(t
(return .

(cadr diodes)))))))))
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; voltage.divider is the diagnostic function for a voltage divider
ude of two resistors. The value returned will be one of the
resistors (which one depends on the value of the output waveform
and the answer to the question asked).

(defun voltage.divider (input-wave output-wave resistors)
(terpri)
(princ "IIs the resistance measured across I)
(prog ()

(return
(cond

((equal output-wave '(nw Ovdc))
(princ (cadr resistors))
(princ 0 I 0? I)
(cond
((equal 'n (read))
(return

(car resistors)))
-(t

(return
(cadr resistors)))))

(t
(princ (car resistors))
(princ 1 0? 1)
(cond
((equal "n (read))
(return
(cadr resistors)))

(t
(return

(car resistors)))))))))

* 4/
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; dual.r.zd.regulator analyzes a voltage regulator consisting of a pair
; of resistor-zenear diode regulators. If the output is OVDC, then it
; is assumed one of the resistors is bad; if the output is 36VDC, then
; one of the diodes is considered bad. Note that in this simple
; implementation, no other considerations are given to partial
; regulation.

(defun dual.r.zd.regulator (input-wave output-wave components)
(prog ()

(return
(cond ((equal output-wave '(nw Ovdc))

(return
(list 'IOne or both of

(list (car components) (caddr components)))))
((member output-vave '((hw 36v.peak) (fhw 36v.peak)))
(return

(list I[One or both of I

(list (cadr components)
(cadddr components)))))))))

; two.way.range.selector diagnoses the range selection circuitry
; composed of a switch and two resistors which form a voltage

divider with the switch connected across one of the resistorE.

16) (defun two.way.range.selector (input-wave output-wave components)
(prog ()

(return
(cond ((equal output-wave '(nw Ovdc))

(terpri)
(princ '"Is output OVDC when the I)
(princ (car components))
(princ 'I is in the other position? 1)
(cond ((equal 'n (read))

(return
(caddr components)))

(t
(return

(cadr components)))))
(t
(return

(list "[ne or both of I (cdr components))))))))
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*-..;" ; pi.rc.filter is a capacitor-resistor-capacitor DC filter diagnostic.
The test may be inconclusive in that if the input-wave is a half-

; wave and the output-wave is a filtered halfwave, we cannot tell if
just one or both capacitors are filtering properly.

(defun pi.rc.filter (input-wave output-wave components)
(prog ()

(return
(cond ((equal output-wave "(nw Ovdc))

(return
(car components)))

((member output-wave "((fw 37v.peak) (hw 37v.peak)))
(return

(cdr components)))

((equal output-wave "(ffw 37v.peak))
(return

(list 'IOne of [ (cdr components))))
(t
(return

(list "lOne of I
(cdr components)
'I may be badt)))))))

complex.dekleer.current.regulator is the diagnostic for the current
regulator in the IP-28 power supply deKleer uses in his paper
referenced in this thesis. The diagnostics are incomplete here
because a more complete analysis of the circuit is needed than is
available. Idealy, the diagnostics would be written by the engineer
responsible for the design and converted to the functional rule
below by the software engineer.

(defun complex.dekleer.current.regulator
(input-wave output-wave components)

(prog ()
(return "cc-reg)))
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"4 Appendix D: DIAGNOSE User's Manual

The contents of this appendix are a combination of a user's guide

for the diagnostic system and any "hints and kinks" that can be remem-

bered concerning its operation.

Booting KEE

At the fep> prompt, type boot >kee.boot

Note that resetting the fep is not normally necessary but may be needed

in which case, prior to booting, at the fep> prompt, type reset fep and

answer y to the question concerning loss of all data; then proceed to

boot KEE.

Loading DIAGNOSE and A Knowledge Base

After KEE has completed the boot process, follow these procedures

for expanding the lisp and kee windows.

1. Click left on the KEE symbol and select the "show changed ele-

ments" option in the pop-up window. An output window will be

displayed in the lower left of the screen. Now do the same

thing again and a second output window will be displayed. The

one we want is the highest, rightmost one. If it is on top, go

on to step 2, otherwise move the mouse to a portion of that

window (showing above and to the right of the other output

window) and click left on it; this will put it on top.

2. Now, click right on the lisp window and select the "inflate"

option; then do the same on the right KEE display window.

The KEE windows are now ready.

3. Login -- Log in before proceeding.
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4. Click left on the KEE symbol and select the "Load KB" option.

When the I/O window requests, enter the path and name of the

knowledge base to be loaded.

5. Enter into the lisp window: (load '>diagnose>diag-load)

diagnose.lisp and funct-cause.lisp will be loaded, then the

user is asked for the current KB. Enter the KB name loaded in

step 4.

6. Notice the KB graph in the left KEE display window; move the

mouse to the upper left of the right display window and click

left on the pen symbol to make the right display window the

current one.

The system is now loaded, ready for diagnostic runs.

Creating p_ Knowledge Base

1. Reset fep -nd boot KEE.

2. Load the basic-diag KB.

3. Copy it to the desired name by selecting the copy option on the

pop-up window (found by clicking left on the KEE symbol) and

answer the pathname request in the I/O window.

4. Delete the basic-diag KB.

5. Enter (set.kb 'kb.name) in the lisp window using the kb.name

created in step 3.

6. Create a member of class circuits for each module and sub-

module.

7. Update the slot values for all the members.

8. Enter (graphkb) in the lisp window and verify the hierarchy

-. graph shown in the KEE display window.
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9. Save the Dew KB.

10. Make the right display window the current one.

Runninz DIAGNOSE

1. Boot KEE.

2. Load the desired KB and DIAGNOSE software.

3. Type (diagnose 'module 'option) in the lisp window where module

is the module/submodule to be diagnosed and option is one of

bench, ate, or fault. Bench is used for bench testing such as

that done in a service shop where the hardware can be opened up

and examined in detail. Ate is used for strict waveform analy-

sis and is here only because it was implemented as an intermed-

iate step in the development of the software during the thesis

research. Fault is the same as ate plus inclusion of the func-

tional diagnostic rules.

4. If bench was the selected option, proceed to step 5.

Respond to the waveform selection by clicking right on the

desired waveform. If 'other' is shown, it means there are more

waveforms to choose from; when the last group of forms are

shown, selecting 'other' will return to the first group of

waveforms. If the wrong form is selected, choose 'reselect' in

the pop-up window; otherwise, choose the 'exit' option to pro-

ceed to the next checkpoint.

5. If ate was the selected option, proceed to step 6.

Answer each of the questions posed by diagnose. If bench was

selected, the questions come from the subfunctions given in the

function slot of each module. If fault was selected, the

D-3



questions are coming from the functional rules invoked by the

system for each module identified as bad.

6. At completion of diagnose, a list of suspected bad components

is given, along with a list of the good components and a list

of components whose performance is unknown. The list of bad

components is given under all three options; this is the only

list displayed by the bench option. All three lists are given

under the ate and fault options.

0
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Appendix E: Sample Runs

BASIC-DIAG.U Knowlege Base

Mode:LISP; Package:KEE; Base:10.--

(BASIC-DIAG
("DWUNZ" "18-Nov-85 13:21:12" "DWUNZ" "14-Feb-86 11:54:38")
NIL
(KNOWLEDGEBASES)
NILI

((KBMETHODFILE (BASIc-DIAG))
(KBSIZE 13)
(KEE .DEVELOPMENT.VERSION.NUHBER 0)
(KEE .MAJOR .VERSION .NUMBER 2)
(KEE .NINOR .VERS ION .14UMBER 1)
(KEE .PATCR .VERS ION.NUMBER 3)
(KEEVERSION KEE2.1)))

(CIRCUITS
("DWUNZ" "18-Nov-85 13:21:37" "DWUNZ" "2 7 -Jan-B6 13:51:44")
((ENTITIES GENERICUNITS))
((CLASSES GENERICUNITS))
NIL

(g ((FUNCT-CAUSE NIL NIL NIL NIL NIL)
(FUNCTION NIL NIL NIL NIL NIL)
(PARTS NIL NIL (CIRCUITS) NIL NIL)
(WAVEFORMS NIL NIL N4IL NIL NIL))

0)

(WAVE
("DWtTNZ" "13-Dec-85 4:31:10" "DWUNZ" "13-Dec-85 4:55:51")
((ENTITIES GENERICUNITS))
((CLASSES GENERICUNITS))
NIL
((DISP.FOR4 (LAMBDA (SELF x Y)

(BITBLT* (EVA. (CAR (GET.VALUES SELF 'FORM)))
0
0
(TV: WINDOW-UNDER-MOUSE)
IX
Y))

METHOD
(METHOD))

(FORM NIL NIL NIL NIL NIL))
0)
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(sw
("Dwunz" "113-Dec-85 4:33:39" "DWURiZ" "23-Jan-86 15:52:17")
NIL
(WAVE)
"S inewave"

((FORMl (SINEWAVE)

(NW
("DWUNZ" "13-Dec-85 4:33:39" "DWUNZ" "23-Jan-86 15:51:29")
NIL
(WAVE)
"Fulivave"

()w

("DWUNZ" "113-Dec-85 4:33:39" "DWLJNZ" " 2 3 -Jan-8 6 15:51:38")
NIL
(WAVE)
"Re lfvave"

((FORM (HALFWAVE)

(ew
("DwunZ" "113-Dec-85 4:33:39" "DWUNZ" "23-Jan-86 15:52:05")
NIL
(WAVE)
"No (flat) wave"

((FORMx (FLATWAVE)

(FFW
("DWUNZ" "114-Feb-86 11:53:46" "DWUNZ" "14-Feb-86 11:54:09")
NIL
(WAVE)
NIL
0)
((FORM. (FILTERED-NW))))

(Few
("DWUNZ" "13-Dec-85 4:33:39" "DWUNZ"1 "23-Jan-86 15:51:18")
NIL
(WAVE)
"Filtered balfwave"l

((FORM4 (FILTF.RED-HW)
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(CNW
(ASSERT "11/021/86 00:59:13" "DWUNZ" "23-Jan-8 6 15:50:44")
NIL
(WAVE)
"Clipped fullwave"
()

((FORM (CLIP-NW))))

(cuw
(ASSERT "1//02//86 01:00:06" "DWUNZ" "23-Jan-86 15:51:00")
NIL
(WAVE)
"clipped halfwave"
()
((FORM (CLIP-RW))))

(CFHW
(ASSERT "1//02//86 01:00:09" "DWUNZ" "23-Jan-86 15:50:28")
NIL
(WAVE)
"Clipped filtered halfwave"
()
((FORM (CLIP-FEW))))

(UNK
("" "24-Jan-86 16:58:00" "" "24-Jan-8 6 16:58:00")

NIL
Ir (WAVE)

NIL
()

((FORM (UNKNOWN))))

(omH
("" "24-Jan-86 16:57:59" "" "24-Jan-86 16:58:00")
NIL
(WAVE)
NIL()
((FORM (OTHER))))

KBEnd
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H89-DIAG.U Knowledg~e Base

.. *. ode:LISP; Package:KEE; Base:1O.--

(H89-DIAG
("DWUNZ" "18-Nov-85 13:21:12"s "DWUNZ"1 "lO-Oct-85 14:56:41")
NIL
(KNOWLEDGE BASES)
NIL
0)
((KBMETRODFILE (u89-DIAG))

(KBSIZE 34)
(KEE .DEVELOPHENT .VER-SION .NUMBER 0)
(KEE .MAJOR .VERSION .NUMBER 2)
(KEE .MINOR.VERSION .NTJMBER 1)
(KEE .PATCR .VERSION .NUMBER 3)
(KEEVERSION KEE2.1)))

(CIRCUITS
("DwuNz" "18-Nov-85 13:21:37" "DWUNZ" "27-Jan-86 13:51:44")
((ENTITIES GENERICUNITS))
((CLASSES GENERICUNITS))
NIL
((FUNCT-CAUSE NIL NIL NIL NIL NIL)

(FUNCTION NIL NIL NIL NIL NIL)
(PARTS NIL NIL (CIRCUITS) NIL NIL)
(WAVEFORM1S NIL NIL NIL NIL NIL))

0)

CH89
(ASSERT "11/1181/85 13:22:59" "DWUNZ" "18-Nov-85 14:33:33")
NIL
(CIRCUITS)
NIL
0)
((FUNCTION ((COMPUTE)

(CPU))
((ISPLAY)
(VIDEO)

((PROVIDE POWER)
(POWER)

(PARTS (CPU VIDEO POWER)

(CPU
(ASSERT "11//18//85 13:24:53" "DWUNZ" "18-Nov-85 13:24:53")
N IL
(CIRCUITS)
NIL
0)

0)
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(VIDEO
(ASSERT "11//181/85 13:25:20" "DWUNZ" "18-Nov-85 13:25:20")
NIL
(CIRCUITS)
NIL
()
0)

(POWER
(ASSERT "11//18//85 13:25:25" "DWUNZ" "18-Nov-85 14:36:47")
NIL
(CIRCUITS)
NIL
()
((FUNCTION (((PROVIDE 18 VDC)

(P18 (PIN1 PIK5)))
((PROVIDE -18 VDC)
(N8 (PIN2 PIN5))),

((PROVIDE 5 VDC)
(P5 (PIN3 PIN5)))

((PROVIDE 2.5 VDC)
(P2.5 (PIN4 PIN5)))))

(PARTS (P18 N18 P5 P2.5))))

(P18
(ASSERT "11//18//85 13:25:28" "DWUNZ" "25-Dec-85 23:13:05")
NIL
(CIRCUITS)
NIL()
((FUNCTION (((CONVERT 117 VRMS TO 13 VRMS)

(PI8.ACSRC (TPI TP3)))
((FULLWAVE RECTIFY 13 VRMS TO 18 V PEAK)
(P18.RECT (PIN1 PIN2)))

((FILTER 18 V PEAK TO 18 VDC)
(Pl8.FILT (PINt PIN5)))))

(PARTS (PI8.FILT P18.RECT P18.ACSRC))))

(P18.FILT
(ASSERT "11//18//85 13:25:54" "DWUNZ" "2 9-Jan- 86 15:02:50")
NIL
(CIRCUITS)
NIL

((FUNCT-CAUSE
((SINGLE .COMPONENT C])))

(WAVEFORMS (((FW 18V.PEAK) (FW 18V.PEAK B))
((NW 18VDC) (FW 18V.PEAK G))
((NW OVDC) (NW OVDC U)

(FW 18V.PEAK B)
(HW 18V.PEAK B))

((FHW 18V.PEAK) (W 18V.PEAK G))
((HN 18V.PEAK) (HW 18V.PEAK B))))))
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(P18.RECT
(ASSERT "11//18//85 13:25:49" "DWUNZ" "27-Jan-86 13:53:51")
NIL
(CIRCUITS)
NIL
)

((FUNCT-CAUSE
((FULLWAVE.RECTIFIER (D2 D4))))

(WAVEFORMS (((FW 18V.PEAK) (SW 36V.P-P G))
((HW 18V.PEAK) (SW 36V.P-P B))
((IW OVDC) (SW 36V.P-P B)

(W OVDc u))))))

(Pl8 .ACSRC
(ASSERT "11//18//85 13:25:44" "DWUNZ" "24-Jan-8 6 14:58:42")
NIL
(CIRCUITS)
NIL
()
((FUNCTION (((RECEIVE 117 VRMS)

(P18.ACSRC.SWITCH (TP7 TP8))
(P18.ACSRC.FUSE (TP7 TP)) )

((CONVERT 117 VRMS TO 13 VRMS)
(P18.ACSRC.TRANSFORMER (TP1 TP3)))))

(PARTS (P18.ACSRC.TRANSFORMER P18.ACSRC.FUSE P18.ACSRC.SWITCH))))

(P18. ACSRC. TRANSFORMER
(ASSERT "11//18//85 13:26:44" "DWUNZ" "27-Jan-86 13:55:56")
NIL
(CIRCUITS)
NIL
()

((FUNCT-CAUSE
((SINGLE.COMPONENT Ti-i)))

(WAVEFORMS (((SW 36V.P-P) (SW 140V.P-P G))
((N OVDC) (SW 140V.P-P B)

(NW OVDC u))))))

(P18.ACSRC.FUSE
(ASSERT "11//18//85 13:26:35" "DWUNZ" "27-Jan-8 6 13:56:24")
NIL
(CIRCUITS)
NIL
()
((FUNCT-CAUSE

((SINGLE.COMPONENT Fl)))
(WAVEFORMS (((SW 140V.P-P) (SW 140V.P-P G))

((NW OVDC) (SW 140V.P-P B)
(NW OVDC U))))))
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(P18.ACSRC.SWITCH
(ASSERT "11//18/185 13:26:27" "DWUNZ" "27-Jan-86 13:56:49")
NIL
(CIRCUITS)
NIL
()
((FURCT-CAUSE

((SINGLE.COMPONENT Si)))
(WAVEFORMS (((SW 140V.P-P) (SW 140V.P-P G))

((NW OVDC) (SW 140V.P-P B)
(NW OVDC U))))))

*i (N18
(ASSERT "11//181/85 13:25:30" "DWUNZ" "23-Jan-86 15:42:32")
NIL
(CIRCUITS)
NIL
()
((FUNCTION (((CONVERT 117 VRMS TO 13 VRMS)

(P18.ACSRC (TPI1 TP3)))
((FULLWAVE RECTIFY 13 VRMS TO -18 V PEAK)

(N18.RECT (PIN2 PINI)))
((FILTER -18V PEAK TO -18 VDC)
(N18.FILT (PIN2 PIN5)))))

(PARTS (NI8.FILT N18.RECT P18.ACSRC))))

(N18 .FILT
(ASSERT "1//01//86 22:12:57" "DWUNZ"' "27-Jan-86 13:57:24")
NIL
(CIRCUITS)
NIL
()
((FUNCT-CAUSE

((SINGLE.COMPONENT C2)))
(WAVEFORMS (((FW -18V.PEAK) (FW -18V.PEAK B))

((NW -18VDC) (FW -18V.PEAK G))
((NW OVDC) (KW OVDC U)

(FW -18VDC B)
(NW -18V.PEAK B))

((FHW -18V.PEAK) (HW -18V.PEAK G))
((HNW -18V.PEAK) (HW -18V.PEAK B))))))
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(N18.RECT
A (ASSERT "1//01//86 22:17:11" "DWUNZ" "27-Jan-86 13:58:09")

NIL
(CIRCUITS)
NIL
0)
((FUNCT-CAUSE

((FULLWAVE.RECTIFIER (D3 DI)
(WAVEFORMS (((N -18V.PEAK) (SW 36V.P-P G))

((HW -18V.PEAK) (SW 36V.P-P B))
((NW OVDC) (SW 36V.P-P B)

(NW OVDC U))))

(P5
(ASSERT "11//18//85 13:25:32" "dwunz" "l-jan-86 23:19:35")
NIL
(CIRCUITS)
NIL
(0
((FUNCTION ((CONVERT 117 VRMS TO 6 VRMS)

(P5.ACSRC (TP4 TP6))
((FULLWAVE RECTIFY 6 VRMS To 8 V PEAK)
(P5.RECT (TP5 TP7))

((FILTER 8V PEAK TO 8 VDC)
(P5.FILT (TP7 PIN5))

((REGULATE 8 VDC TO 5VDC)
(P5.REG (PIW3 PINS)))

(PARTS (P5.REG P5.FILT P5.RECT P5.ACSRC))))

(P5.REG
(ASSERT "1//01//86 23:12:49" "DWIJNZ" "27-Jan-86 13:58:55")
N IL
(CIRCUITS)
NIL
0)
((FUNCI-CAUSE

((SINGLE.COKPONENT 5VREG-1)
(WAVEFORMS ((CFW 5V.PEAK) (NW 8V.PEAK G))

((cHW 5V.PEAK) (HW 8V.PEAK G))
((CniW SV.PEAK) (FIHW 8V.PE. G))
((NW OVDc) (NW 8V.PEAK B)

(HW BV.PEAK B)
.dI. (FHW 8V.PEAX B)

(NW OVDC U)
(NW 8VDC B))

((NW 5VDC) (NW BVDC G))
((NW 8V.PEAK) (NW 8V.PEAK B))
((NW 8V.PEAK) (HW 8V.PEAK B))
((Few 8V.PEAK) (FHw 8V.PEAK B))
((NW 8VDC) (NW 8VDC B))))
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(P5.FILT
(ASSERT "1//01//86 22:21:18" "DWUNZ" "27-Jan-86 13:59:20")
NIL

(CIRCUITS)
NIL
()

((F uCT-CAUSE
((SINGLE .COMPONENT C3)))

(WAVEFORMS (((FW 8V.PEAK) (FW 8V.PEAK B))
((NW 8VDC) (FW 8V.PEAK G))
((NW OVDC) (KW OVDC U)

(Fw 8V.PEAX B)
(HW 8V.PEAK B))

((FIN 8V.PEAK) (IN 8V.PEAK G))
((HW 8V.PEAK) (H, 8V.PEAK B))))))

(P5 .RECT
(ASSERT "1//01//86 22:21:22" "DWUNZ" " 2 7-Jan- 8 6 13:59:45")
NIL
(CIRCUITS)
NIL
()

((FUNCT-CAUSE
((SINGLE.COMPONENT B2)))

(WAVEFORMS (((FW 8V.PEAK) (SW 16V.P-P G))
((W 8V.PEAK) (SW 16V.P-P B))
((NW OVDC) (SW 16VP-P B)

(NW OVDC U))))))
.1

(P5.ACSRC
(ASSERT "1//01//86 22:21:38" "DWUNZ" "27-Jan-86 14:02:31")
NIL
(CIRCUITS)
NIL
()
((FUNCTION (((RECEIVE 117 VRMS)

(PI8.ACSRC.SWITCH (TP7 TP8))
(P18.ACSRC.FUSE (TP7 TP8)))

((CONVERT 117 VRMS TO 6 VRMS)
(P5.ACSRC.TRANSFORMER (TP4 TP6)))))

(PARTS (P5.ACSRC.TRANSFORMER P18.ACSRC.FUSE P18.ACSRC.SWITCH))))

(P5.ACSRC.TRANSFORMER
(ASSERT "1//01//86 23:24:33" "DWUNZ" "27-Jan-86 14:00:18")
NIL
(CIRCUITS)
NIL
()
((FUNCT-CAUSE

((SINGLE.COMPONENT TI-2)))
(WAVEFORMS (((SW 16V.P-P) (SW 140V.P-P G))

((NW OVDC) (SW 140V.P-P B)
(NW OVDC U))))))
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(P2.5
(ASSERT "11/118//85 13:25:35" "DWUNZ" "23-Jan-86 15:41:16")
NIL
(CIRCUITS)
NIL

((FUNCTION ((convERT 117 VRMS TO 6 VRM's)
(P5.ACSRC (TP4 TP6))

((FULLWAVE RECTIFY 6 VRI4S TO 8 V PEAK)
(P5.RECT (T1'5 TP7)))

% ((FILTER 8V PEAK TO 8VDC)
(P5.FILT (TP7 PIN5))

((REGULATE 8VDC TO 5VDC)
(P5.REG (PIN3 PIN5))
((IVIDE 5 VDC TO 2.5 VDC)
(P2.5.VOLT.DIV (PiN'. P115))

(PARTS (P2.5.VOLT.DIV P5.REG P5.FILT P5.RECT P5.ACSRC))))

-~ (P2.5.VOLT.DIV
(ASSERT "1/1011186 22:58:51" "DWUNZ" "'27-Jan-86 14:03:56")
NIL
(CIRCUITS)
NIL
0)
((FUNCT-CAUSE

((VOLTAGE.DIVIDER (RI R2)
(WAVEFORMS ((FW 8V.PEAK) (FW 8V.PEAK B))

((Hw 8V.PEAK) (EW 8V.PEA B))
((Few 8V.PEAK) (FHW 8V.PF.AK B))
((NW 5OR8VDC) (Nw 5OR8VDC B))

-~((CFW 5V.PEAK) (CFW 5V.PEAK B))
((CHW 5V.PEAK) (CHW 5V.PEAK B))
((C~uw 5V.PEAK) (CFHw 5V.PEAK B))
((NW OVDC) (NW OVDC U)

(NW 8V.PEAK B)
.4., (HW 8V.PEAK B)

(reW 8V.PEAK B)
(NW 5OR8VDC B)
(CFW 5V.PEAK B)
(CHW 5V.PEAK B)

((N 4VPEAK) (CFHW 5V.PEAK B))
((FW4V.PAY,) (F 8V.PEAK G))

((HW 4V.PEAK) (iv 8V.PEAK G))
((FHW 4V.PEAK) (FHw 8V.PEAR G))
((NW 2.5OR4VDC) (NW 50R8VDC G))
((CFW 2.5V.PEAK) (CFW 5V.PEAK G))
((CHW 2.5V.PEAK) (cHW 5V.PEAK G))
((CFHW 2.5V.PEAK) (CraW 5V.PEAK G))))
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(WAVE
("DWUNZ" "13-Dec-85 4:31:10" "DWURZ" "13-Dec-85 4:55:51")
((ENTITIES GENERICUNITS))
((CLASSES GENERICUNITS))
NIL
((DISP.FORM (LAMBDA (SELF X Y)

(BITBLT* (EVAL (CAR (GET.VALUES SELF 'FOR14))
0
0
(TV: WINDO'W-UNDER-MOUSE)
x
Y))

* METHOD
(METHOD)

(FORM NIL NIL NIL NIL NIL))
0)

(sw
("DWUNZ" "13-Dec-85 4:33:39" "DWIJNZ" "23 -Jan-8 6 15:52:17")
NIL
(WAVE)
"S inewave"

a ()
* ((FORM (SINEWAVE)

(FW
("DWUNZ" "13-Dec-85 4:33:39" "DWUNZ" "23-Jan-86 15:51:29")
NIL
(WAVE)
"Ful iwave"

((FORM (FULLWAVE)

(Nw
('DWIUNZ" "13-Dec-85 4:33:39"1 "DWUNZ" "23-Jan-86 15:51:38")
NIL

* (WAVE)
"Hal fvave"

((FORM (RAL'WAVE)

* (NW
("DWUNZ" "13-Dec-85 4:33:39" "DWUNZ" "23-Jan-86 15:52:05")

-s NIL
A (WAVE)

"No (flat) wave"
0)
((FORM (FLATWAVE)
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(F W
("DWUNZ" "13-Dec-85 4:33:39" "DWUNZ" "23-Jan-8 6 15:51:18")
NIL
(WAVE)
"Filtered halfvave"
()

((FORM (FILTERED-n)O)))

(CFW
(ASSERT "1//02/186 00:59:13" "DWUNZ" "23-Jan-86 15:50:44")
NIL
(WAVE)
"Clipped fullwave"
()
((FORM (CLIP-FW))))

(CnW
(ASSERT "1//02//86 01:00:06" "DWUNZ" "23-Jan-86 15:51:00")
NIL
(WAVE)
"clipped halfwave"

((FORM (CLIP-HW))))

(CFHW
(ASSERT "1//02//86 01:00:09" "DwUNZ" "23-Jan-86 15:50:28")
NIL
(WAVE)
"Clipped filtered balfvave"
()
((FORM (CLIP-FHW))))

(UNK
("" "24-Jan-86 16:58:00" "" "24-Jan-86 16:58:00")
NIL(WAVE)
"Waveform unknown to system"
()

((FORM (UNKNOWN))))

(OTH
i("" "24-Jan- 8 6 16:57:59" "" "2 4 -Jan-8 6 16:58:00")

NIL

(WAVE)
"Select from other panel"
()

((FORM (OTHER))))

KBEnd
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H89-DIAG Sample Run Using BENCH Diagnostics

Figure 6 shove the status of the Symbolics screen at the end of the

command (diagnose 'p5 "bench). The 189 Knowledge base is displayed in

the left KEE Display window, the right KEE Display window displays the

current component being tested, and the Lisp Listener window shows the

dialog between the diagnostic system and the user. The right Display

window is updated for each question during the dialog to display the

component being tested and its substructure.
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Figures 7 through 9 show the steps taken for the command

(diagnose p5 'fault). Figure 7 is the screen display after entering

the command, and shows the "OTHER" option about to be selected. Figure

8 follovs with the "FILTERED-HW 8V.PEAK" option to be selected. At the

end of the diagnostic run, the Lisp Listener vindov shows the final

output from the run listing the good, unknown, and bad components.
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DEKLEER-DIAG.J Knovledge Uase

M.. ode:LISP; Package:KEE; Base:10. --

(DEKLEER-DIAG
("DWUNZ" "5-Feb-86 21:57:39" "DWUNZ" "14-Feb-86 11:50:56")
NIL
(KNOWLEDGEBASES)
NIL

((KBsIzE 29)
(KEE.DEVELOPMENT .VERSION .NTJMBER 0)
(KEE.MAJOR.VERSION.NUNBER 2)
(KEE.NINOR.VERSION.NJMBER 1)
(KEE .PATCR .VERS ION .NUI4BER 3)
(KEEVERSION KEE2.1)))

(CIRCUITS
("DWUNz" "5-Feb-86 21:57:39" "DWUNZ" "5-Feb-86 21:57:40")
((ENTITIES GENERICUNITS))
((CLASSES GENERICUNITS))
NIL
((FUNqCT-CAUSE NIL NIL NIL NIL NIL)
(FUNCTION NIL NIL NIL NIL NIL)
(PARTS NIL NIL (CIRCUITS) NIL NIL)
(WAVEFORMS NIL NIL NIL NIL NIL)

0)

(DF.XLEER
("DWUNZ" "9-Oct-85 21:23:58" "DWUNZ" "9-Oct-85 21:55:15"1)
NIL
(CIRCUITS)
N IL
0)

* ((FUNCTION ((REGULATE VOLTAGE LEVEL)
(VOLTAGE-CONTROL))

((REGULATE CURRENT LEVEL)
(CURRENT-CONTROL)

(PARTS (CURRENT-CONTROL VOLTAGE-CONTROL)
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(CURRENT-CONTROL
("DWuNZ" "9-Oct-85 21:23:58" "DWUNZ" "9-Oct-85 22:00:20")
NIL
(CIRCUITS)
NIL

((FUNCTION (((FILTER OUTPUT SIGNAL)
(CC-FILT2))

((REGULATE CURRENT LEVEL)
(CC-REG))

*, ((FILTER RECTIFIED AC SOURCE)
(CC-FILT1))

((RECTIFY AC SOURCE)
(CC-RECT))
((PRODUCE AC SOURCE) (CC-ACSRC))))

(PARTS (CC-FILT2 CC-REG CC-FILTI CC-RECT CC-ACSRC))))
'.

(CC-FILT2
("DWUNZ" "9-Oct-85 21:24:02" "DWUNZ" "14-Feb-86 11:41:52")
NIL
(CIRCUITS)
NIL
)

((FUNCT-CAUSE
((SINGLE.COMPONENT (C5))))

(WAVEFORMS (((NW OVDC) (NW OVDC U)
(NW 37VDC B)

:, i (NW 30VDC B)
(FFW 37V.PEAK B)
(FFW 30V.PEAK B)
(FW 37V.PEAK B)
(FW 30V.PEAK B)
(FW 37V.PEAK B)
(FHW 30V.PEAK B)
(HW 37V.PEAK B)
(HW 30V.PEAK B))

((NW 37VDC) (NW 37VDC G)
(FFW 37V.PEAK G))

((NW 30VDC) (NW 30VDC G)
(FFW 30V.PEAK G))

((FFW 37V.PEAK) (FFW 37V.PEAK B)
(FW 37V.PEAK G))

((FFW 30V.PEAK) (FFW 30V.PEAK B)
(FW 30V.PEAK G))

((FHW 37V.PEAK) (FHw 37V.PEAK B)
(HW 37V.PEAK G))

((FHW 30V.PEAK) (FHW 30V.PEAK B)
(HW 30V.PEAK C))

((FW 37V.PEAK) (FW 37V.PEAK B))
((Fw 30v.PEAK) (FW 30V.PEAK B))
((HW 37V.PEAK) (Hw 37V.PEAK B))
((HNW 30V.PEAK) (HW 30V.PEAK B))))))

,E '2
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(CC-REG
("DWUNZ" "9-Oct-85 21:24.:02" DWUNZ" 14-Feb-86 11:27 :20')
NIL
(CIRCUITS)

4 NIL

4 ((FUNCT-CAUSE
((COMPLEX .DEKLEER .CURRENT. REGULATOR

(Qi Q2 Q3 Q4 Q5 Q6 R2 RB R9 R10 l R12 R13 R14 C6))
(WAVEFORMS ((NW OVDC) (NW 37VDC B)

(FFW 37V.PEAK B)
(FW 37V.PEAK B)
(NW OVDC U)
(FHw 37V.PEAK B)
(HW 37V.PEAK B))

((NW 37VDC) (NW 37VDC B))
((NW 3OVDC) (FYW 37V.PEAX G)

(NW 37VDC G))
((FFW 37V.PEAK) (FFW 37V.PEAK B))
((FFW 30V.PEAK) (FFW 37V.PEAK G))
((FW 37V.PEAK) (FW 37V.PEAK B))
((FW 30V.PEAK) (FW 37V.PEA G))
((Fiiw 37V.PEAR) (FIN 37V.PEAK B))
((FEW 30V.PEAK) (FHW 37V.PEAK G))
((11W 37V.PEAE) (HW 37V.PEAK B))
((HW 30V.PEAK) (HW 37V.PEaK G))))))

(CC-FILT1
("DWUNZ" "9 -Oct-BS 21:24:02" "DWUNZ" "14-Feb-86 11:08:58")
N IL
(CIRCUITS)
NIL
0)
((FUNCT-CAUSE

((PI.RC.FILTER (Ri C3 C4)))
(WAVEFORMS ((NW OVDC) (NW OVDC U)

(Fw 37V.PEAK B))
((NW 37VDC) (FW 37V.PEAK G))
((FFw 37V.PEAK) (FW 37V.PEAK B))
((HW 37V.PEAK) (HW 37V.PEAK B))
((FHw 37V.PEAK) (EW 37V.PEAK B))
((FW 37V.PEAR) (FW 37V.PEAK B))))
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(CC-RECT
("DWUNZ" "9-Oct-85 21:24:02" "DWUNZ" "14-Feb-86 11:10:57")
NIL
(CIRCUITS)
NIL()
((FUNCT-CAUSE

((FLLWAVE.RECTIFIER (Dl D2))))
(WAVEFORMS (((NW OVDC) (NW OVDC U)

(SW 74V.P-P B))
((FW 37V.PEAK) (SW 74V.P-P G))
((HW 37V.PEAK) (SW 74V.P-P B))))))

(CC-ACSRC
("DwUNz" "9-Oct-85 21:24:01" "DWUNZ" "14-Feb-86 11:01:10")
NIL
(CIRCUITS)
NIL

((FUNCT-CAUSE
((SINGLE.COMPONENT (TI-2))))

(WAVEFORMS (((NW OVDC) (NW OVDC U)
(SW 140V.P-P B))

((SW 74V.P-P) (SW 140V.P-P G))))))

(VOLTAGE-CONTROL
ti ("DWUNz" "9-Oct-85 21:23:58" "DWUNZ" "14-Feb-86 10:55:20")

NIL
(CIRCUITS)
NIL
()
((FUNCTION (((RECTIFY VOLTAGE-CONTROLLER OUTPUT)

(VC-RECT2))
((VARY OUTPUT VOLTAGE)
(VC-VOLT-CONTROL))

((FILTER OUTPUT VOLTAGE)
(VC-FILT2))

((SWITCH BETWEEN 10V AND 30V RANGES)
(VC-RANGE-SELECTOR))

((PROVIDE 30V REGULATED DC)
(VC-REG))

((FILTER RECTIFIED AC SOURCE)
(VC-FILT1))

((RECTIFY AC SOURCE)
(vc-RECT1))
((PRODUCE AC SOURCE)
(VC-ACSRC))))

(PARTS (VC-RECT2 VC-VOLT-CONTROL VC-FILT2 VC-RANGE-SELECTOR
VC-REG VC-FILT1 VC-RECT1 VC-ACSRC))))
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(VC-RECT2
("DWTJNZ" "9 -Oct- 8 5 21:24:01" "DWUNZ" "lO-Oct-85 14:39:26")
NIL
(CIRCUITS)
NIL
0)
((FUNCT-CAUSE

( (SINGLE. CMPONENT (DOM))
(WAVEFORMS ((NW OVDc) (NW OVDC U)

(iv 36V.PEAK B)
(FHW 36V.PEAK B)
(CFEW 30V.PEAKC B)
(civ 30V.PEAK B)
(NW 3OVDC B)
(iv 12V.PEaJ B)
(nHW 12V.PE. B)
(cFHW 10V.PEAK B)
(civ 10V.PEAK B)
(NW lOVDC B)
(iv 18V.PEAK B)
(FHW 18V.PEAK B)
(cFHW 15V.PEAK B)
(CEv 15V.PEAYK B)
(Nv 15VDC B)
(Hv 6V.PEAK B)
(FHv 6V.PEAK B)
(CFHW 5V.PF.AK B)
(CHv 5V.PEAK B)
(NW 5VDC B))

((iv 36V.PEAK) (Hv 36V.PF.AR G))
((FW 36V.PEAK) (FiW 36V.PEaK G))
((CFHv 30V.PE.AK) (CFHW 30V.PEAK G))
((civ 30V.PEAK) (Civ 30V.PEAK G))
((NW 3OVDC) (NW 3OVDC G))
((iv 12V.PEAK) (Ev 12V.PEAK G))
((FHN 12'V.PEAI) (FiN 12V.PEAK G))
((CMu 1OV.PEAK) (CrEW 1OV.PEAK G))
((civ iOV.PEAJ) (civ 10V.PEJAK G))
((NW lOVDc) (NW 1OVDC G))
((iv 18V.PEAK,) (iv 18V.PEAK G))
((nv' 18V.PEAR) (FHW 18V.PEJAK G))
((cFiiv 15V.PEAK) (cFHv 15V.PEAK G))
((CEW 15V.PEAKX) (Civ 15V.PEAK G))
((NW 15VDC) (NW 15VDC G))
((iv 6V.PEAYK) (iv 6V.PEAK G))
((rev 6V.PEAK) (FHW 6V.PEJAX G))
((CMi 5V.PEAR) (CFnv 5V.PEAK G))
MEWi 5V.PEAK) (civ 5V.PEAK G))
((NW 5VDC) (NW 5VDC C))))
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(VC-VOLT-CONTROL
("DWvjNZ" "19-Oct-8 5 21:24:01" "DWUflZ" "10OctBS5 14:25:00")
NIL
(CIRCUITS)
NIL

((FUNCT-CAUSE
((SINGLE.COMPONET (W)

(WAVEFORMS (((W OVDC) (W OVDC U)
(eW 36V.PL4K B)
(HWw 36v.PEAK, B)
(cYHW 30V.PEAK B)
(CHW 30V.PEAK B)
(NW 3OVDC B)
(EW 12V.PLAK B)
(FEW 12V.PEAK B)
(cveW 10V.PEAK B)
(CE[W 1OV.PEAK B)
(W 1OVDC B))

((Hv 36V.PEAK) (MW 36v.PEAK B))
((FHW 36V.PEAZ) (FHW 36V.PEAK B))
((cruW 30V.PMA) (CFHW 30V.PEAK B))
((cHv 30V.PEAK) (cHv 30V.PEAK B))
((NW 3OVDC) (NW 3OVDC B))
((MW 12V.PEAK) (EBy 12V.PEAR B))
((FMW 12V.PEAK) (FHW 12V.PEAK B))
((CFEW 1OV.Pr.AK) (CMa 10V.PEAK B))
((Civ IOV.EAK (CHv 10V.PEAK B))
((NW lOVDC) (NW IOVDC B))
((MW 18V.PEAK) (MW 36V.PEAK G))
((FHW lbV.PEAK) (FIN 36V.PEAK G))
((CM'i 15V.PF.Ax) (CFHW 30V.PEAK G))
((Civ 15V.PEAK) (CHW 30V.PEAK G))
((NW 15VDC) (NW 3OVDC G))
((Hv 6V.PEaK) (Hv 12V.PE.AK G))
((FE[W 6V.PEAX) (FHW 12V.PEAK G))
((CFIHv 5V.PEAK) (CFHW 10V.PEAK G))
((CiiW 5V.PEAK) (CEw 10V.PEAK G))
((NW 5VDC) (NW 1OVDC G))))

E-24



(VC-FILT2
("DHT.NZ" "9-Oct-85 21:24:01" "DWUIIZ" "1O-Oct-85 14:27:57")
NIL
(CIRCUITS)
NIL

((FUNCT-CAUSE
((SIRGLE.COKPONENT (C2)

(WAVEFORuMS ((NW OVDC) (NW OVDC U)
(EW 36V.PEAK B)
(Few 36V.PEAK B)
(cFHW 30V.PEAK B)
(cHw 30V.PEAY, B)
(Nw 30VDC B)
(uW 12V.PEAK, B)
(FeW 12V.PRAJ B)
(CFHw 10V.PEAK B)
(cuw 10V.PEAK B)
(W 1OVDC B0)

((iiW 36V.PEAK) (iN 36V.PEAK B))
((FeW 36V.PEAK) (Few 36V.PEAK B)

(EW 36V.PEAK G))
((CFHW 30V.PEAK) (CFEW 30V.PEAK B)

(Cew 30V.PEAK G))
((cHw 30V.PEAK) (CHi 30V.PEAIK B))
((NW 30VDC) (UFHW 30V.PEAK G)

(CHw 30V.PEA. G))
((HW 12V.PEAK) (IN 12V.PEAK B))
((FEW 12V.PEAR) (Few 12V.PEAK B)

(HW 12V.PEAK G))
((CFHW 1OV.PEAK) (CFHw 10V.PEAZK B)

(cew 10V.PEAK G))
((cMI 1OV.PEAK) (cmi 10V.PEAK B))
((NW 1OVDC) (NW IOVDC G)

(CM~ 10V.PEaK G)
(cHW lOV.PEA G))))
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(VC-RANGE-SELECTOR
("DWUNZ" "9-Oct-BS 21:24:00" "DWUNZ" "14-Feb-86 10:58:12")
NIL
(C IRCUJITS)
NIL

((FUNCT-CAUSE
((TWO.WAY.RANGE.SELECTOR ((VOLTAGE RANGE SWITCH) R5 R6)))

(WAVEFORMS ((NV OVDC) (NW OVDC U)
(HW 36V.PEAK B)
(FHw 36V.PEAYK B)
(CFHW 30V.PEAK B)
(cHw 30V.PEAK B)
(NW 3OVDC B))

((HW 36V.PEAK,) (11W 36V.PEAK B))
((Few 36V.PEAK) (Few 36V.PEAK, B))
((CFHW 30V.PEAK) (CFHW 30V.PEAK B))
((cHW 30V.PEAK) (cKW 30V.PEAK B))
((NW 3OVDC) (NV 3OVDC B))
((HW 12V.PEAK) (eW 36V.PEAK G))
((FeW 12V.PEAK) (Few 36V.PEAK G))
((CMe IOV.PEAK) (CFHW 30V.PEAK G))
((Cew 10V.PEAK) (CHrW 30V.PEAK G))
((NVw lOVDc) (W 30VDC c))))

CYC-REG
("DWU14z" "9-Oct-85 21:24:00" "DWUNZ" "10-Oct-BS 13:50:03")
NIL
(CIRCUITS)
NIL

((FmNCT-CAUSE
((DUAL.R.ZD.REGULATOR (R3 D4 R4 D5)))

(WAVEFORMS ((NV OVItC) (NW OVDC U)
(HW 36V.PEAX B)
(FHW 36V.PEAK B))

((NV 36V.PEAK) (HW 36V.PEAK B))
((Few 36V.PEAK) (Few 36V.PEAK B))
((CFHW 30V.PEAK) (Few 36V.PEAK G))
((CHW 30V.PEAK) (EW 36V.PEAK G))
((NV 3OVDC) (FEW 36V.PEAK G))))
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(vc-FILTI
("Dwunz" "9-Oct-85 21:24:00"1 "DWUNz" "10-Oct-85 13:42:21"
NIL
(CIRCUITS)
NIL

((FtmCT-CAUSE
((SINGLE.COIPONENr (ci)))

(WAVEFORMS (((NW OVDC) (NW OVDC Ui)
(HW 36V.PEAK B))

((HW 36V.PEAK) (NW 36V.PEAK W)
((FeW 36V.PEAK) (NW 36V.PEAK G))))))

(VC-RECTI
("DwunZ" "19-Oct-85 21:24:00" "DWUVZ" "lO-Oct-BS 13:39:50")
NIL
(CIRCUITS)
NIL
0)
((FUNCT-CAUSE

((SINGLE.cOMPONT (D3)
(WAVEFORM~S (((NW OVDC) (NV OVDC U1)

(SW 72V.P-P B))
((HW 36V.PEAK) (SW 72V.P-P G))))))

(VC-ACSRC
("DWUNZ" "9-Oct-85 21:23:58" "DWUTNZ" "10-Oct-85 13:40:17")
NIL
(CIRCUITS)
NIL

((FUNCT-CAUSE
((SIGLE.COMPONENT (Ti-i))))

(WAVEFORMS (((NW OVDc) (KW OVDC u)
(SW 140V.P-P B))

((SW 72V.P-P) (SW 140V.P-P G))))))

(WAVE
("DwUNZ" "5-Feb-86 21:57:40" "DWUNZ" "5-Feb-86 21:57:40")
((ENTITIES GENERICUNITS))
((CLASSES GENERICUNITS))
NIL
((DISP.FORM (LAMBDA (SELF X Y)

(BITBLT* (EVAL (CAR (GET.VALUES SELF 'FORM))
0
0
(TV: WINDOW-UNDER-MOUSE)
x
Y))

METHOD
(METHOD)

(FORM NIL NIL NIL NIL NIL))
* 0)
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(SW
("DWUNZ" "5-Feb-86 21:57:40" "DWUJNZ" "5-Feb-86 21:57:40")
NIL
(WAVE)
"S inewave"

((FOM (SINEWAVE)

* (FN
("DWUNZ" "5-Feb-86 21:57 :40" "DWUt4Z" "5-Feb-86 21:57:41")
NIL

* (WAVE)
* "Fullvave"

()W

("DWURZ" "5-Feb-86 21:57 :40" "DWUI4Z" "5-Feb-86 21:57:41")
NIL
(WAVE)
"Ralfwave"
0)
((FORM4 (&ALFWAVE)

(NW
("DWUNZ" "5-Feb-86 21:57:40" "DWEJNZ" "5-Feb-86 21:57:41")
NIL

* (WAVE)
"No (flat) wave"
0)
((FORMi (FLATWAVE)

* (FFw
("DWUNZ" "14-Feb-86 11:47:30" "DWUNZ" "14-Feb-86 11:50:00")
NIL
(WAVE)
"Filtered fuliwave"
0)

* ((FORMl (FILTERED-FW))))

(FIN
("DWUNZ" "5-Feb-86 21:57:40"1 "DWUNZ" "5-Feb-86 21:57:41")
NIL
(WAVE)
"Filtered halfwave"

*1 (0
((FoRIK (FILTERED-E))

(CFw
("DWIJNZ" "5-Feb-86 21:57:39" "DWUNZ" "5-Feb-86 21:57:41")

* (~wNIL

(WAVE)
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"Clipped fullvave". "()

((FORM (CLIP-F))))

("DWUNZ" "5-Feb-86 21:57:39" "DWUNZ" "5-Feb-86 21:57:41")
NIL
(WAVE)
"clipped halfvave"
()

((FORM (CLIP-HW)

(CFHw
("DWUNZ" "5-Feb-86 21:57:39" "DWUNZ" "5-Feb-86 21:57:41") C
NIL
(WAVE)
"Clipped filtered halfwave"

((FORK (CLIP-MOM))

("DWUNZ" "5-Feb-86 21:57:40" "DWUNZ" "5-Feb-86 21:57:40")
NIL
(WAVE)
NIL()
((FORM (UKNOWN))))

(OTH '

("DWLNZ" "5-Feb-86 21:57:40" "DWUNZ" "5-Feb-86 21:57:41")
NIL

(WAVE)
NIL
()

((FORM (oTHER))))

KBEnd

E-29

%I-



DEKLEER-DIAG w Run Usinx Shk FAULT Ovtion

Figures 10 through 14 show the diagnostic run for the command

(diagnose Ovoltage-control 'fault). Figures 10 through 12 show the

"FLATWAVE OVDC" option being selected for each of the outputs. Figure

13 shows the "CLIP-FHW 30V.PEAK" option being chosen, and figure 14

displays the final output in the Lisp Listener window listing the good,

unknown and bad components found in the diagnostic run.
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